
1

Deep Graph Neural Networks

Yukuo Cen
GNN Center, Zhipu AI

KEG, Tsinghua University
Advisors: Yuxiao Dong, Jie Tang

Course Link: https://cogdl.ai/gnn2022/
CogDL is publicly available at https://github.com/THUDM/cogdl

https://cogdl.ai/gnn2022/
https://github.com/THUDM/cogdl

2

Background

Question: How to determine K? Do we need deeper GNNs?

3

Outline

• JKNet (ICML’18)
• PPNP (ICLR’19)
• DropEdge (ICLR’20)
• GCNII (ICML’20)
• DeeperGCN (Arxiv 2020)
• RevGNN (ICML’21)

4

JKNet (ICML’18)

• Observations:
– 2-layer GCN performs well
– GCNs with more layers do not perform well

(although have access to more information)

• Questions:
– Limitation of neighborhood aggregation?

Xu, Keyulu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie Jegelka. "Representation learning on graphs with
jumping knowledge networks." In ICML’18.

5

JKNet (ICML’18)

• Analysis: connections between influence
distributions and random walk distribution:

• Hard to determine propagation step!
• Layer aggregation!

Xu, Keyulu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie Jegelka. "Representation learning on graphs with
jumping knowledge networks." In ICML’18.

6

JKNet Results

• Layer-aggregation Mechanism
– Concatenation
– Max-pooling
– LSTM-attention

7

PPNP (ICLR’19)

• Inspired by JKNet:
– connections between influence distribution and

random walk distribution

• Decouple the propagation and transformation!

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2018. Predict then propagate: Graph neural networks meet personalized pagerank.
In ICLR’19.

8

PPNP (ICLR’19)

• Personalized PageRank (PPR):
• By solving the equation, we obtain:
• Personalized propagation of neural predictions (PPNP):

– generate predictions based on its own features and then
propagate them via PPR:

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2018. Predict then propagate: Graph neural networks meet personalized pagerank.
In ICLR’19.

9

APPNP (ICLR’19)

• PPNP needs 𝑂(𝑛!) to calculate the full PPR matrix:

• Approximate PPNP (APPNP):
– via power iteration step

10

(A)PPNP Results

11

DropEdge (ICLR’20)

• Issues that prevents GNNs from being deeper:
– over-fitting
– over-smoothing

Rong, Yu, Wenbing Huang, Tingyang Xu, and Junzhou Huang. "Dropedge: Towards deep graph convolutional networks on node classification." arXiv
preprint arXiv:1907.10903 (2019).

12

DropEdge (ICLR’20)

• DropEdge:

• Prevent over-fitting:
– unbiased data augmentation

• Alleviate over-smoothing:
– Slow down the convergence of over-smoothing
– Reduce information loss

Rong, Yu, Wenbing Huang, Tingyang Xu, and Junzhou Huang. "Dropedge: Towards deep graph convolutional networks on node classification." arXiv
preprint arXiv:1907.10903 (2019).

13

Discussions of DropEdge

• DropEdge vs Dropout
– Dropout: no help to prevent over-smoothing

• DropEdge v.s. Node sampling
– GraphSAGE, FastGCN, ASGCN

• DropEdge v.s. Graph-Sparsification
– Random vs Fixed

14

DropEdge Performance

15

GCNII (ICML’20)

• Previous works:
– Tackle over-smoothing: JKNet, DropEdge
– Decoupled models: SGC, (A)PPNP
– Successful case in CNNs: ResNet

• Question: How to design deep GNNs?

Chen, Ming, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. "Simple and deep graph convolutional networks." In ICML’20.

16

GCNII (ICML’20)

• Initial residual connection:
– Similar approach to APPNP (but APPNP remains shallow)
– Combine the smoothed representations with initial features

• Identity mapping:
– Similar to the motivation of ResNet
– Add an identity matrix to the weight matrix

• GCNII (Combine the two techniques)

Chen, Ming, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. "Simple and deep graph convolutional networks." In ICML’20.

17

GCNII Results

• GCNII*: employ different weights for PH and H(0):

18

DeeperGCN

• Generalized Aggregation Function (Mean-Max)
– Find a better aggregator than mean and max

• SoftMax_Agg:
– lim
!→#

SoftMax_Agg! = Mean

– lim
!→$

SoftMax_Agg! = Max

• PowerMean:
– PowerMean_Agg%&' = Mean
– lim
%→$

PowerMean_Agg% = Max

19

Different GNN architectures

• ResGCN:
– GraphGonv → Normalization → ReLU → Addition

• ResGCN+:
– Normalization → ReLU → GraphGonv → Addition

• ResGEN:
– ResGCN + generalized message aggregators

• DyResGEN:
– Dynamicly learn the parameters of generalized message

aggregators at every gradient descent step

20

DeeperGCN Results

21

Deep GNNs (From 112 to 1000 layers)

• DeeperGCN: All You Need to Train Deeper GCNs
– Li et al., June 2020
– Generalized Message Aggregation
– Pre-activation residual connections
– Up to 112 layers (GPU memory bounded)

• Training Graph Neural Networks with 1000 Layers
– Li et al., ICML 2021
– Reversible connections
– Up to 1000 layers

Li, Guohao, et al. "Deepergcn: All you need to train deeper gcns." arXiv preprint arXiv:2006.07739 (2020).
Li, Guohao, et al. "Training Graph Neural Networks with 1000 Layers." arXiv preprint arXiv:2106.07476 (2021).

22

Recall Backpropagation in GNNs

• Graph convolution：
𝑯 !"# = 𝑨𝑯 ! 𝑾!

• Backward of graph convolution：
∇𝑯 ! = 𝑨%∇𝑯 !"# 𝑾!

%

∇𝑾!= 𝑯 ! %𝑨%∇𝑯 !"#

∇𝑨= ∇𝑯 !"# 𝑾!
%𝑯 ! %

• We need to save 𝑯 ! for each layer, which
costs O(ND) memory per layer。

23

GNNs with 1000 Layers (ICML’21)

• Challenges: O(LND) memory, linear to the number layers
• Reversible connections!
• (inspired by NeurIPS 2017: The reversible residual network:

Backpropagation without storing activations)
• Grouped Reversible GNN block:

Forward (from 𝑋! to 𝑋!′) Backward (from 𝑋!′ to 𝑋!)

24

RevGNN on ogbn-proteins

• ogbn-proteins dataset：
– Node: proteins
– Edge: biologically meaningful associations (e.g., homology)

25

RevGNN v.s. ResGNN

26

RevGNN v.s. all variants

• RevGNN-Wide
– 448 layers+224 hidden

• RevGNN-Deep
– 1001 layers+80 hidden

• Compared with
RevGNN/ResGNN/WT/D
EQ-x (x: hidden)

• Datapoint size is
proportional to
\sqrt(#parameters)

27

Summary

• JKNet (ICML’18): layer aggregation
• PPNP (ICLR’19): propagation of predictions
• DropEdge (ICLR’20): randomly drop edges

• GCNII (ICML’20): 64-layer GNNs
• DeeperGCN (Arxiv 2020): 112-layer GNNs
• RevGNN (ICML’21): 1000-layer GNNs

28

Homework 8: Deep GNNs

• Comment on deep GNNs:
– Due by 11th Sept.
– No coding
– Write your comments (Reading other papers if possible)
– Post them to https://discuss.cogdl.ai/t/topic/104
– Discuss with others
– Send your comments and discussions (via screenshots) to

our email

• Final DDL of HWs: 20th Sept.

https://discuss.cogdl.ai/t/topic/104

29

Course Project

• DDL(strict): 20th Sept.

• Submission details:
– A technique report (background, method, result, …)
– A poster for communication
– Online demo (https://app.cogdl.ai)
– With the help of TAs

https://app.cogdl.ai/

30

Yukuo Cen, KEG, Tsinghua U. https://github.com/THUDM/cogdl
Online Discussion Forum https://discuss.cogdl.ai/

Thank you！
Collaborators:

Zhenyu Hou, Yuxiao Dong, Jie Tang, et al. (THU)
Qingfei Zhao, Xinije Zhang, Peng Zhang, et al. (Zhipu AI)

Hongxiao Yang, Chang Zhou, et al. (Alibaba)
Yang Yang (ZJU)

https://github.com/THUDM/cogdl
https://discuss.cogdl.ai/

