

Consistency Regularization for GNNs

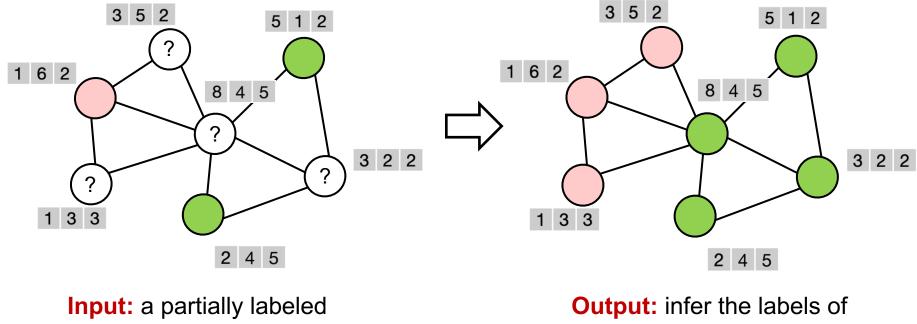
Yukuo Cen

GNN Center, Zhipu Al KEG, Tsinghua University Advisors: Yuxiao Dong, Jie Tang

Course Link: <u>https://cogdl.ai/gnn2022/</u>

CogDL is publicly available at https://github.com/THUDM/cogdl

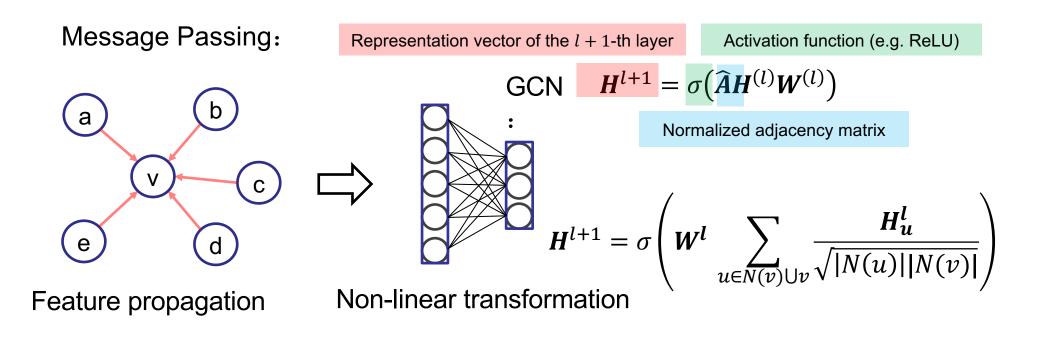
Semi-Supervised Learning on Graphs



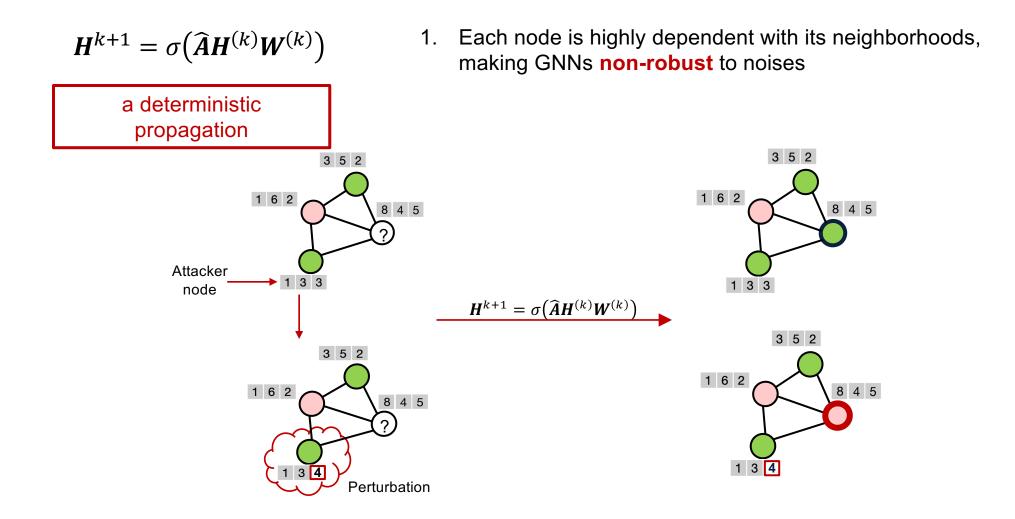
& attributed graph

unlabeled nodes

Graph Neural Networks (GNN)



Potential Issues of GNNs



• Zügner D, Akbarnejad A, Günnemann S. Adversarial attacks on neural networks for graph data. In KDD 2018.

Potential Issues of GNNs

$$\boldsymbol{H}^{k+1} = \sigma(\widehat{\boldsymbol{A}}\boldsymbol{H}^{(k)}\boldsymbol{W}^{(k)})$$

feature propagation is Laplacian smoothing, coupled with non-linear transformation

- 1. Each node is highly dependent with its neighborhoods, making GNNs non-robust to noises
- 2. Stacking many GNNs layers may cause over-smoothing.

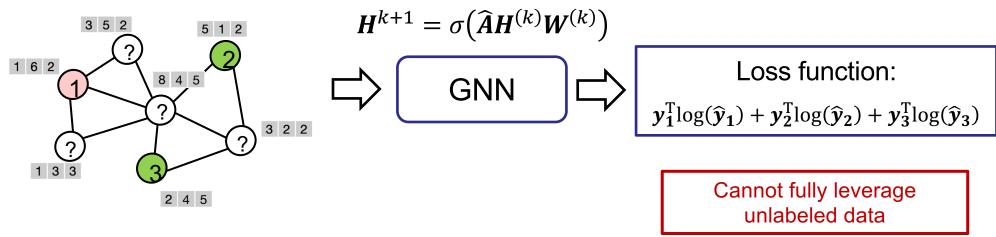
• Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for semi-supervised learning. In AAAI'18.

• Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node classification. In ICLR, 2020.

Potential Issues of GNNs

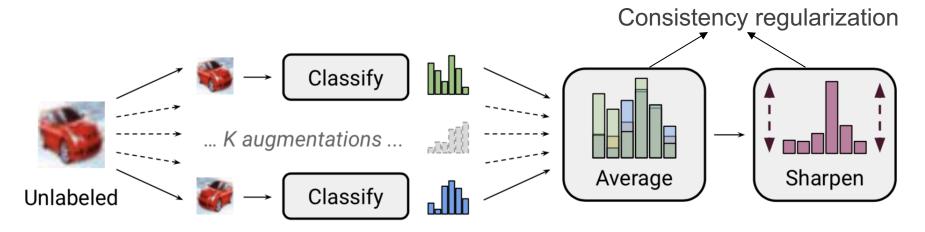
- Each node is highly dependent with its neighborhoods, making GNNs nonrobust to noises
- 2. Stacking many GNNs layers may cause over-smoothing.
- 3. Under semi-supervised setting, standard training method is easy to **over-fit** the scarce label information.

Standard training method for GNN:



Recent advances in Semi-Supervised Learning

• Improving models' generalization through image data augmentation and consistency regularization.

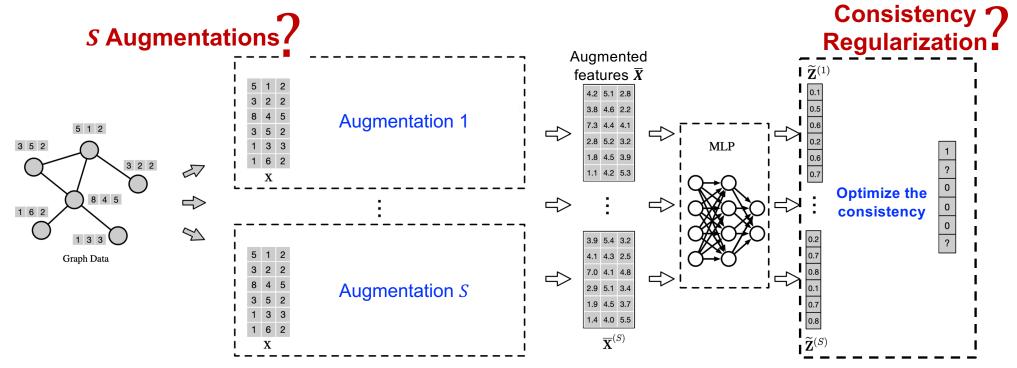


(Picture from MixMatch's paper)

• Berthelot D, Carlini N, Goodfellow I, et al. Mixmatch: A holistic approach to semi-supervised learning. In NIPS'19.

Graph Random Neural Network (GRAND)

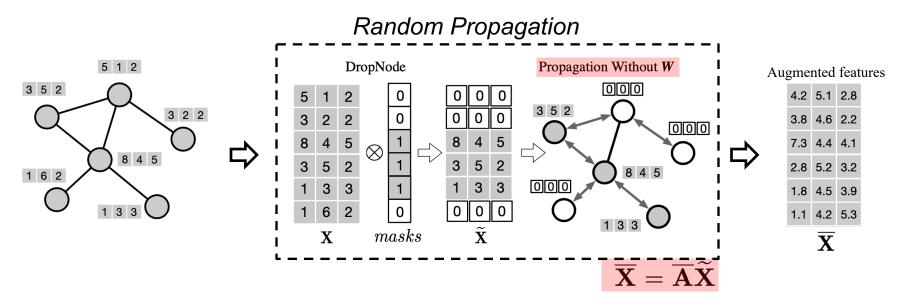
- Consistency Regularized Training:
 - Generates *S* data augmentations of the graph
 - Optimizing the consistency among *S* augmentations of the graph.



• Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. <u>https://arxiv.org/abs/2005.11079</u>, 2020

Random Propagation in GRAND

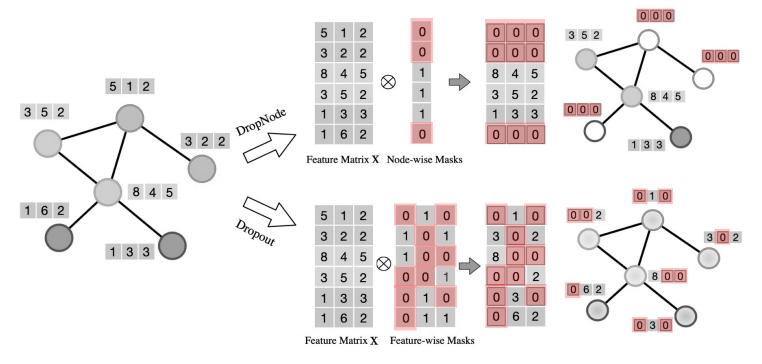
- Random Propagation (DropNode + Propagation):
 - Enhancing robustness: Each node is enabled to be not sensitive to specific neighborhoods.
 - Mitigating over-smoothing and overfitting: Decouple feature propagation from feature transformation.



• Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. https://arxiv.org/abs/2005.11079, 2020

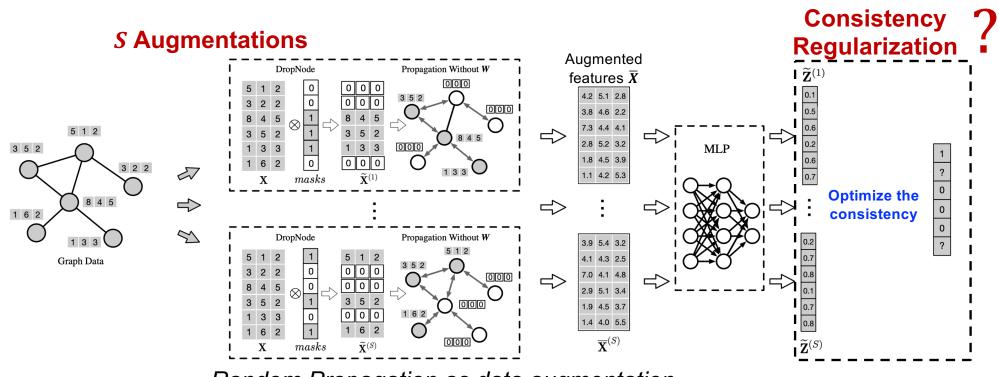
Random propagation: DropNode vs Dropout

- Dropout drops each element in X independently
- DropNode drops the entire features of selected nodes, i.e., the row vectors of *X*, randomly



- Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. <u>https://arxiv.org/abs/2005.11079</u>, 2020
- Code & data for Grand: <u>https://github.com/Grand20/grand</u>

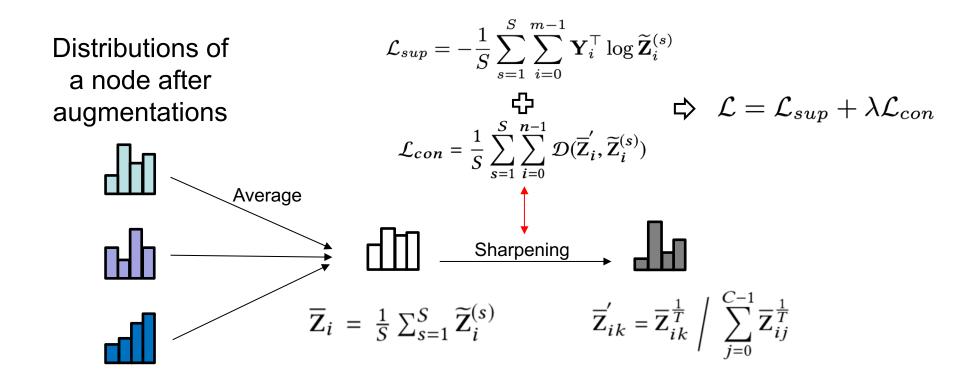
Consistency Regularization?



Random Propagation as data augmentation

Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. <u>https://arxiv.org/abs/2005.11079</u>, 2020

GRAND: Consistency Regularization



• Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. <u>https://arxiv.org/abs/2005.11079</u>, 2020

Training Algorithm of GRAND

Input:

Adjacency matrix \hat{A} , feature matrix $X \in \mathbb{R}^{n \times d}$, times of augmentations in each epoch *S*, DropNode probability δ .

Output:

Prediction Z.

- 1: while not convergence do
- 2: **for** s = 1 : S **do**
- 3: Apply DropNode via Algorithm 1: $\widetilde{\mathbf{X}}^{(s)} \sim \text{DropNode}(\mathbf{X}, \delta)$.
- 4: Perform propagation: $\overline{\mathbf{X}}^{(s)} = \frac{1}{K+1} \sum_{k=0}^{K} \hat{\mathbf{A}}^k \widetilde{\mathbf{X}}^{(s)}$.
- 5: Predict class distribution using MLP: $\widetilde{\mathbf{Z}}^{(s)} = P(\mathbf{Y} | \overline{\mathbf{X}}^{(s)}; \Theta)$.
- 6: end for
- 7: Compute supervised classification loss \mathcal{L}_{sup} via Eq. 4 and consistency regularization loss via Eq. 6.
- 8: Update the parameters Θ by gradients descending:

$$\nabla_{\Theta} \mathcal{L}_{sup} + \lambda \mathcal{L}_{con}$$

9: end while

10: Output prediction Z via Eq. 8.

Consistency Regularized Training Algorithm

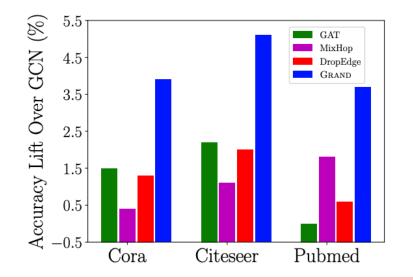
Generate S Augmentations

Consistency Regularization

Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. <u>https://arxiv.org/abs/2005.11079</u>, 2020

GRAND Results

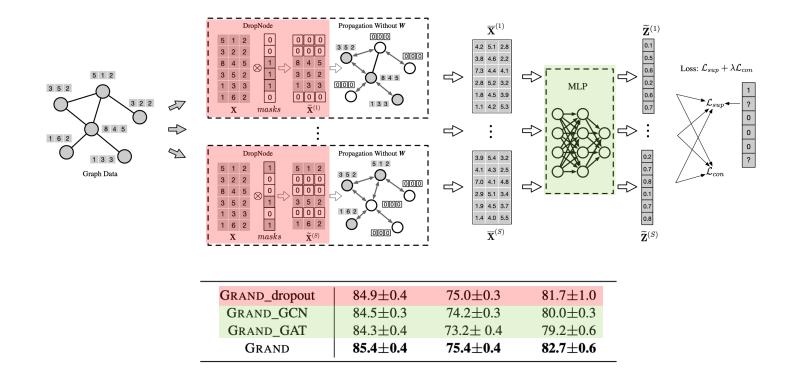
	Method	Cora	Citeseer	Pubmed
-	GCN [19]	81.5	70.3	79.0
	GAT [32]	83.0±0.7	72.5 ± 0.7	79.0 ± 0.3
	APPNP [20]	83.8±0.3	71.6 ± 0.5	79.7 ± 0.3
	Graph U-Net [11]	84.4 ± 0.6	73.2 ± 0.5	$79.6 {\pm} 0.2$
GCNs	SGC [36]	81.0 ± 0.0	71.9 ± 0.1	78.9 ± 0.0
	MixHop [1]	81.9 ± 0.4	71.4 ± 0.8	$80.8 {\pm} 0.6$
	GMNN [28]	83.7	72.9	81.8
	GraphNAS [12]	84.2 ± 1.0	73.1 ± 0.9	$79.6 {\pm} 0.4$
Sampling	GraphSAGE [16]	78.9±0.8	67.4±0.7	77.8±0.6
GCNs	FastGCN [7]	$81.4 {\pm} 0.5$	$68.8{\pm}0.9$	77.6 ± 0.5
-	VBAT [10]	83.6±0.5	74.0±0.6	79.9±0.4
Regularization	G ³ NN [24]	82.5 ± 0.2	74.4 ± 0.3	77.9 ± 0.4
GCNs	GraphMix [33]	83.9±0.6	74.5 ± 0.6	81.0 ± 0.6
GUNS	DropEdge [29]	82.8	72.3	79.6
-	GRAND	85.4±0.4	75.4±0.4	82.7±0.6



Instead of the marginal improvements by conventional GNN baselines over GCN, *GRAND* achieves much more significant performance lift in all three datasets!

• Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. https://arxiv.org/abs/2005.11079, 2020

Results of Different Choices



Evaluation of the design choices in GRAND

• Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. <u>https://arxiv.org/abs/2005.11079</u>, 2020

Ablation Study of GRAND

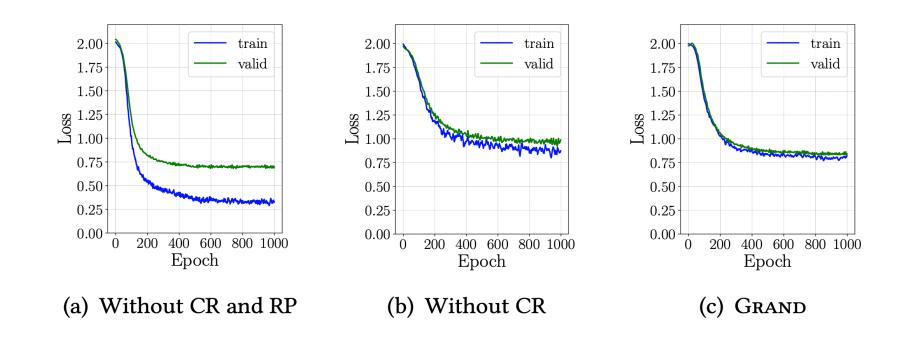
Method	Cora	Citeseer	Pubmed
GCN [19]	81.5	70.3	79.0
GAT [32]	83.0±0.7	72.5 ± 0.7	79.0 ± 0.3
APPNP [20]	83.8±0.3	71.6 ± 0.5	79.7 ± 0.3
Graph U-Net [11]	84.4 ± 0.6	73.2 ± 0.5	$79.6 {\pm} 0.2$
SGC [36]	81.0 ± 0.0	71.9 ± 0.1	78.9 ± 0.0
MixHop [1]	81.9 ± 0.4	71.4 ± 0.8	$80.8 {\pm} 0.6$
GMNN [28]	83.7	72.9	81.8
GraphNAS [12]	84.2±1.0	73.1±0.9	$79.6 {\pm} 0.4$
DropEdge [29]	82.8	72.3	79.6
w/o CR	84.4±0.5	73.1±0.6	80.9±0.8
w/o mDN	84.7 ± 0.4	$74.8 {\pm} 0.4$	81.0 ± 1.1
w/o sharpening	84.6 ± 0.4	72.2 ± 0.6	$81.6 {\pm} 0.8$
w/o CR & DN	83.2±0.5	70.3±0.6	78.5±1.4

Ablation Study

- 1. Each of the designed components contributes to the success of GRAND.
- 2. GRAND w/o consistency regularization outperforms almost *all 8 nonregularization based GCNs & DropEdge*

- Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. <u>https://arxiv.org/abs/2005.11079</u>, 2020
- Code & data for Grand: <u>https://github.com/Grand20/grand</u>

Analysis of CR and RP

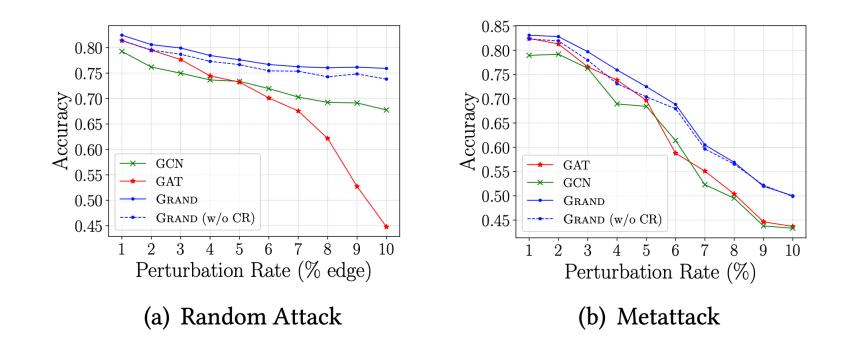


Generalization

1. Both the random propagation and consistency regularization improve GRAND's generalization capability

[•] Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. https://arxiv.org/abs/2005.11079, 2020

Robustness Analysis

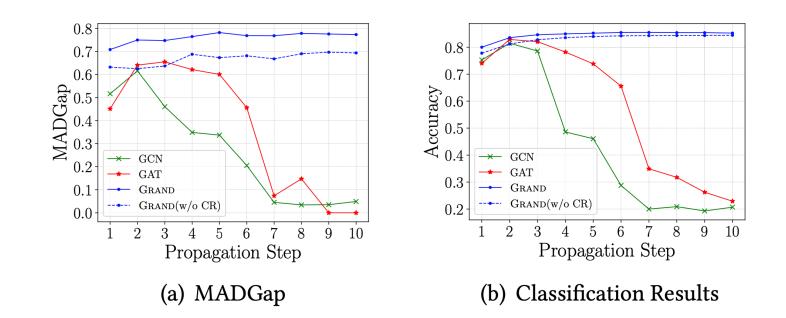


Robustness

1. GRAND (with or w/o) consistency regularization is more robust than GCN and GAT.

Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. <u>https://arxiv.org/abs/2005.11079</u>, 2020

Over-smoothing Analysis



Over-Smoothing

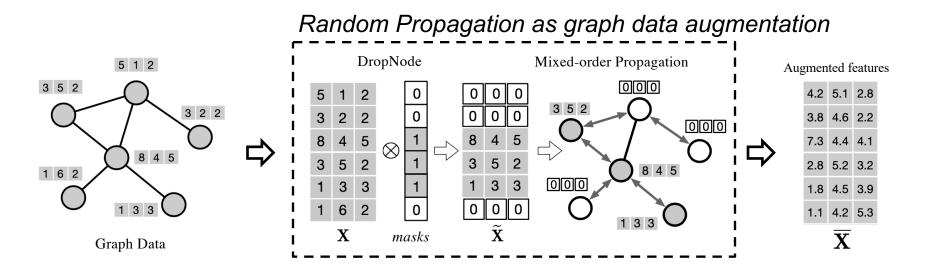
1. GRAND is very powerful to relieve over-smoothing, when GCN & GAT are very vulnerable to it

Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. <u>https://arxiv.org/abs/2005.11079</u>, 2020

GRAND+: Scalable Graph Random Neural Networks

Review GRAND

- Random Propagation (DropNode + Propagation):
 - Decouple the feature propagation from non-linear feature transformation.
 - Propagate feature with a mixed-order adjacency matrix: $\Pi = \sum_{n=0}^{N} \frac{1}{N+1} \widehat{A}^n$
 - Use DropNode to randomly aggregate neighbors' features



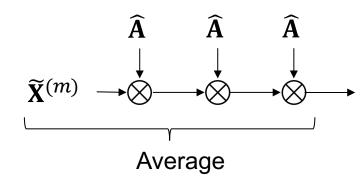
Feng W, Zhang J, Dong Y, et al. Graph random neural networks for semi-supervised learning on graphs[J]. Advances in neural information processing systems, 2020, 33: 22092-22103.

Scalability limitation of GRAND

• Random Propagation in GRAND:

$$\overline{\mathbf{X}}^{(m)} = \mathbf{\Pi} \, \widetilde{\mathbf{X}}^{(m)}, \qquad \mathbf{\Pi} = \sum_{n=0}^{N} \frac{1}{N+1} \, \widehat{\mathbf{A}}^n$$

• $\overline{\mathbf{X}}^{(m)}$ is calculated with power iteration:



Weak Scalability:

- Time/Memory complexity: O(|E| + |V|).
- Random propagation needs to be formed for multiple times at each epoch.

GRAND+: General Idea

- Mini-batch Radom Propagation:
 - Select a batch of nodes at each training step, and generate augmented features by

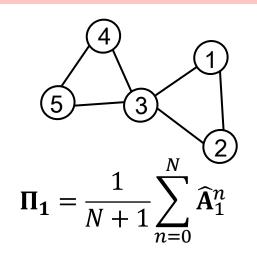
$$\overline{\mathbf{X}}_{s}^{(m)} = \sum_{\boldsymbol{\nu} \in \mathcal{N}_{\boldsymbol{\nu}}^{\pi}} \boldsymbol{z}_{\boldsymbol{\nu}} \cdot \boldsymbol{\Pi}(s, \boldsymbol{\nu}) \cdot \mathbf{X}_{\boldsymbol{\nu}}, \qquad \overline{\boldsymbol{z}_{\boldsymbol{\nu}}} \sim Bernoulli(1 - \delta)$$
Non-zero elements in $\boldsymbol{\Pi}_{s}$
$$\boldsymbol{\Pi} = \sum_{n=0}^{N} \frac{1}{N+1} \widehat{\mathbf{A}}^{n}$$

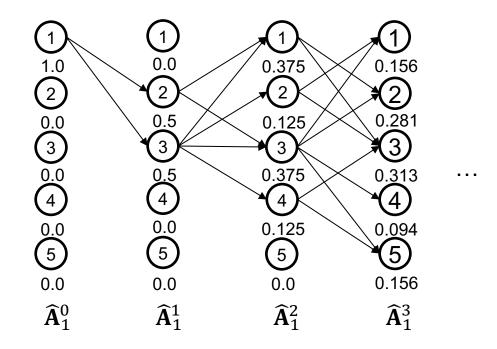
How to efficiently calculate the row vector Π_s ?

GRAND+: Matrix approximation

$$\mathbf{\Pi} = \frac{1}{N+1} \sum_{n=0}^{N} \widehat{\mathbf{A}}^n$$

 $\widehat{\mathbf{A}} = \widetilde{\mathbf{D}}^{-1}\widetilde{\mathbf{A}}$ is random walk reverse transition matrix. $\mathbf{P}(s, v)$ indicates the random walk probability from s to v.





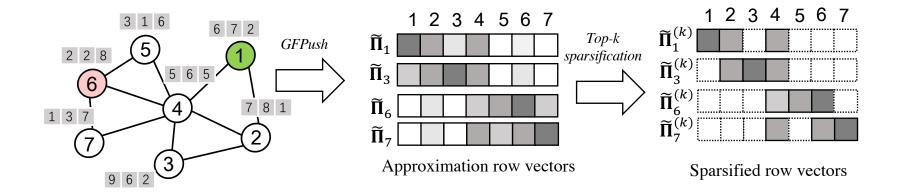
Random Walk Probability Diffusion Complexity: O(|E|) \bigcirc

GRAND+: Matrix approximation

Generalized Forward Push (GFPush) Memory Complexity: T/r_{max}

GRAND+: Matrix approximation

- Approximation method:
 - GFPush: Generate an error bounded approximation $\widetilde{\Pi}_s$ for Π_s .
 - Top-*k* sparsification: Truncate $\widetilde{\Pi}_s$ for top-*k* elements.



GRAND+: Mini-batch Radom Propagation

• Mini-batch Random Propagation with Approximation:

$$\overline{\mathbf{X}}_{s}^{(m)} = \sum_{v \in \mathcal{N}_{v}^{(k)}} \mathbf{z}_{v} \cdot \widetilde{\mathbf{\Pi}}^{(k)}(s, v) \cdot \mathbf{X}_{v}, \qquad \mathbf{z}_{v} \sim Bernoulli(1 - \delta)$$
Non-zero elements in $\widetilde{\mathbf{\Pi}}_{v}^{(k)}$

• Prediction:

 $\widehat{\mathbf{Y}}^{(m)} = \mathrm{MLP}(\overline{\mathbf{X}}^{(m)}_{s}, \Theta)$

With batch size as b, the time complexity is $O(b \cdot k)$, which is independent of graph size

Scalability: Adopt GFPush to approximately calculate the propagation matrix , and adopt mini-batch method for model training

GRAND+: Propagation matrix

• Propagation Matrix in GRAND:

$$\Pi = \sum_{n=0}^{N} \frac{1}{N+1} \widehat{\mathbf{A}}^n, \quad \widehat{\mathbf{A}} = \widetilde{\mathbf{D}}^{-1} \widetilde{\mathbf{A}}$$

• Generalized Mixed-order Matrix:

$$\Pi = \sum_{n=0}^{N} w_n \widehat{\mathbf{A}}^n, \quad \widehat{\mathbf{A}} = \widetilde{\mathbf{D}}^{-1} \widetilde{\mathbf{A}}$$

Flexibility: Using a set of tunable weights $\{w_t | 0 \le t \le T\}$ to control the importance of different orders of neighborhoods

Confidence-aware Consistency Regularization

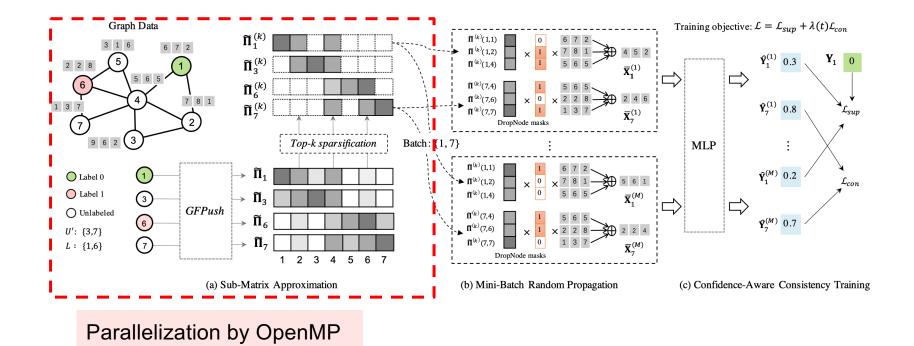
• Confidence-aware Consistency Loss:

$$\mathcal{L}_{con} = \frac{1}{b_u \cdot M} \sum_{s \in U_n} \mathbb{1}(\max(\overline{\mathbf{Y}}_s) \geq \gamma) \sum_{m=1}^M \mathcal{D}(\widetilde{\mathbf{Y}}_s, \hat{\mathbf{Y}}_s^{(m)}),$$

Confidence term: Filter out unlabeled nodes that have low confidence

Effectiveness: Further improving prediction performance

GRAND+ Architecture



GRAND+: Better scalability & generalization capability

GRAND+ Experiments

Category	Method	Cora	Citeseer	Pubmed
	GCN	81.5 ± 0.6	71.3 ± 0.4	79.1 ± 0.4
Full-batch	GAT	83.0 ± 0.7	72.5 ± 0.7	79.0 ± 0.3
	APPNP	84.1 ± 0.3	71.6 ± 0.5	79.7 ± 0.3
GNNs	GCNII	85.5 ± 0.5	73.4 ± 0.6	80.3 ± 0.4
	GRAND	85.4 ± 0.4	75.4 ± 0.4	82.7 ± 0.6
	FastGCN	81.4 ± 0.5	68.8 ± 0.9	77.6 ± 0.5
Scalable	GraphSAINT	81.3 ± 0.4	70.5 ± 0.4	78.2 ± 0.8
GNNs	SGC	81.0 ± 0.1	71.8 ± 0.1	79.0 ± 0.1
GININS	GBP	83.9 ± 0.7	72.9 ± 0.5	80.6 ± 0.4
	PPRGo	82.4 ± 0.2	71.3 ± 0.3	80.0 ± 0.4
Our	GRAND+ (P)	$\textbf{85.8} \pm \textbf{0.4}$	$\textbf{75.6} \pm \textbf{0.4}$	84.5 ± 1.1
Methods	GRAND+ (A)	85.5 ± 0.4	75.5 ± 0.4	$\textbf{85.0} \pm \textbf{0.6}$
	GRAND+ (S)	85.0 ± 0.5	74.4 ± 0.5	84.2 ± 0.6

Table 2: Classification Accuracy (%) on Benchmarks.

Better generalization performance: Achieves 2.3% improvements over GRAND on Pubmed.

GRAND+ Experiments

Table 3: Accuracy (%) and Running Time (s) on Large Graphs.

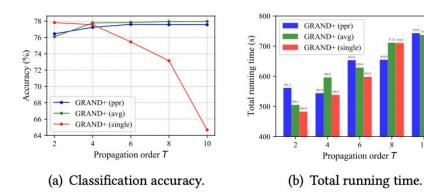
Method	AMiner	-CS	Reddi	t	Amazon	2M	MAG	.
Method	Acc	RT	Acc	RT	Acc	RT	Acc	RT
GRAND	53.1±1.1	750	ООМ	-	OOM	-	OOM	-
FastGCN	48.9±1.6	69	89.6±0.6	158	72.9±1.0	239	64.3±5.6	4220
GraphSAINT	51.8±1.3	39	92.1±0.5	39	75.9±1.3	189	75.0±1.7	6009
SGC	50.2±1.2	9	92.5±0.2	31	74.9±0.5	69	-	>24h
GBP	52.7±1.7	21	88.7±1.1	370	70.1±0.9	280	-	>24h
PPRGo	51.2±1.4	11	91.3±0.2	233	67.6±0.5	160	72.9±1.1	434
GRAND+ (P)	53.9±1.8	17	93.3±0.2	183	75.6±0.7	188	77.6±1.2	653
GRAND+ (A)	54.2±1.7	14	93.5±0.2	174	75.9±0.7	136	80.0±1.1	737
GRAND+ (S)	54.2±1.6	10	92.8±0.2	62	76.2±0.6	80	77.8±0.9	483

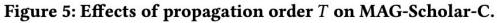
Scalability:

- 40 times faster than GRAND on Aminer-CS.
- 8 times faster than FastGCN on MAG.
- 12 times faster than GraphSAINT on MAG.
- Achieves comparable running time and 4.9% improvement than PPRGo on MAG.

Parameter Analysis

10





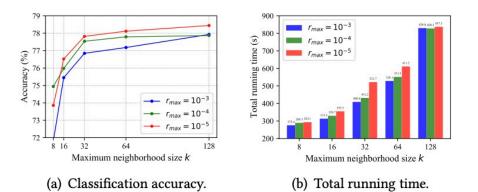
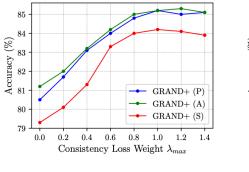
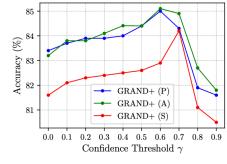


Figure 4: GRAND+ w.r.t. k and r_{max} on MAG-Scholar-C.





(a) Accuracy w.r.t. λ_{max} .

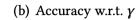


Figure 2: Effects of λ_{max} and γ on Pubmed.

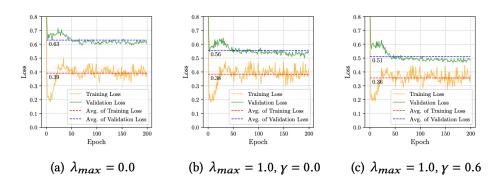
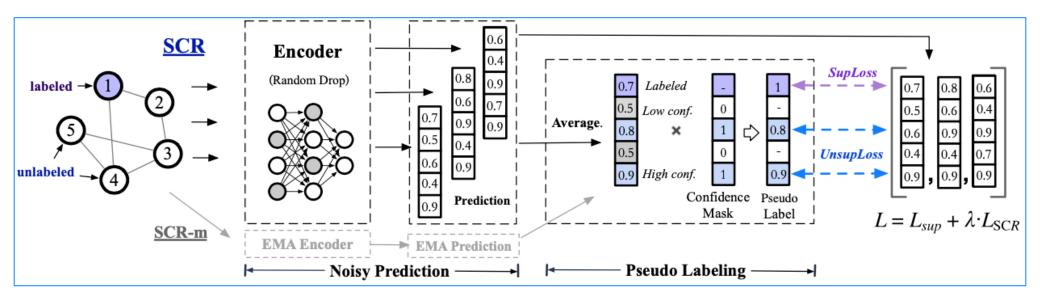


Figure 3: Training and Validation Losses on Pubmed.

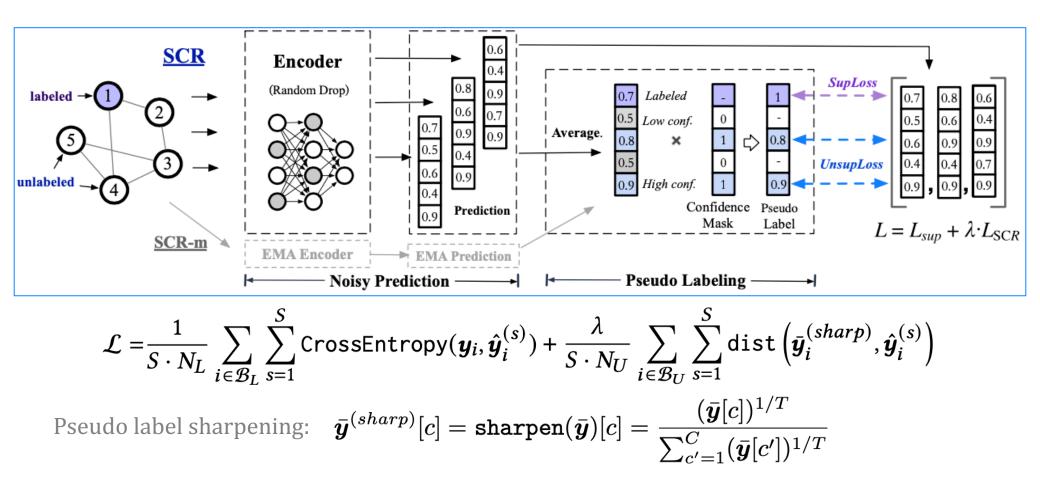
SCR: Training Graph Neural Networks with Consistency Regularization

The SCR Framework



- Noisy Prediction Generation: Get multiple predictions with different dropout masks
- Pseudo Labeling: obtain pseudo labels for unlabeled data
 - SCR: averages the noisy predictions
 - SCR-m: exploits an EMA teacher encoder

The SCR Framework



SCR Results on OGB.

Methods	Arch.	C&S	Validation	Test
_	MLP		75.54 ± 0.14	61.06 ± 0.08
-		-		
	MLP	V	91.47 ± 0.09	84.18 ± 0.07
	GCN	-	92.00 ± 0.03	
	GraphSAGE	-	92.24 ± 0.07	78.50 ± 0.14
	SIGN	-	92.99 ± 0.04	80.52 ± 0.16
	SAGN	-	93.09 ± 0.04	81.20 ± 0.07
	GAMLP	-	93.12 ± 0.03	83.54 ± 0.09
E	SAGN	-	93.09 ± 0.07	84.68 ± 0.12
Æ	SAGN	\checkmark	93.02 ± 0.03	84.85 ± 0.10
U	GAMLP	-	93.24 ± 0.05	84.59 ± 0.10
CR	GAMLP	-	93.30 ± 0.06	84.07 ± 0.06
CR-m	GAMLP	-	93.19 ± 0.03	84.62 ± 0.03
U + SCR	GAMLP	-	92.92 ± 0.05	85.05 ± 0.09
U + SCR	GAMLP	\checkmark	93.04 ± 0.05	$\textbf{85.20}\pm0.08$
ing node fe	eatures generate	ed by Gi	IANT-XRT	
LE	SAGN	-	93.63 ± 0.05	86.22 ± 0.22
LE	SAGN	\checkmark	93.52 ± 0.05	86.43 ± 0.20
CR	SAGN	-	93.64 ± 0.05	86.67 ± 0.09
CR	SAGN	\checkmark	93.57 ± 0.04	86.80 ± 0.07
CR-m	SAGN	-	93.89 ± 0.02	86.51 ± 0.09
CR-m	SAGN	\checkmark	93.87 ± 0.02	$\textbf{86.73} \pm 0.08$

Table 2: Classification accuracy on ogbn-products. Results with gray are obtained by our proposed framework.

Table 3: Classification accuracy on ogbn-mag. Results withgray are obtained by our proposed framework.

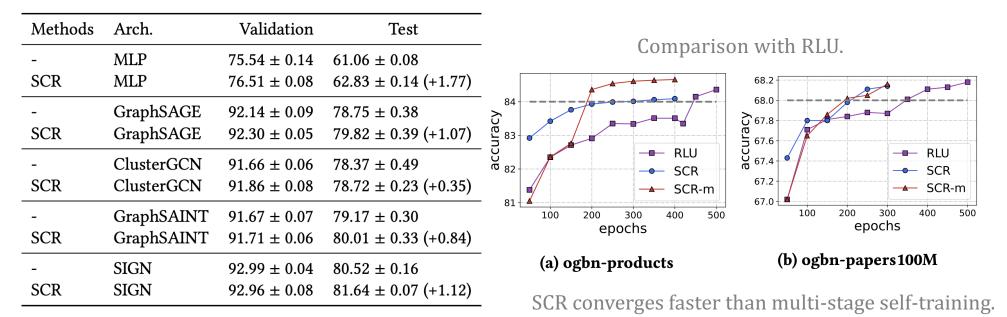
$\frac{\text{Methods} \text{Arch.} \text{Validation} \text{T}}{- \qquad \text{MLP} \qquad 26.26 \pm 0.16 26.92 \pm 0.16}$	ſest
$-$ MIP $26.26 \pm 0.16 - 26.02 \pm 0$	
- 10121 20.20 ± 0.10 20.92 ± 0).26
- R-GCN 40.84 ± 0.41 39.77 ± 0).46
- SIGN $40.68 \pm 0.10 40.46 \pm 0$).12
- NARS 53.72 ± 0.09 52.40 ± 0).16
- NARS_SAGN 54.12 ± 0.15 52.32 ± 0).25
- NARS_GAMLP 55.48 ± 0.08 53.96 ± 0).18
SLE NARS_SAGN 55.91 ± 0.17 54.40 ± 0).15
RLU NARS_GAMLP 57.02 ± 0.41 55.90 ± 0).27
SCR NARS_GAMLP 56.54 ± 0.21 54.32 ± 0).18
SCR-m NARS_GAMLP 55.90 ± 0.28 54.51 ± 0).19
RLU + SCR NARS_GAMLP 57.34 ± 0.35 56.31 ± 0).21

Table 4: Classification accuracy on ogbn-papers100M. Results with gray are obtained by our proposed framework.

odsArch.ValidationTestMLP 49.60 ± 0.29 47.24 ± 0.31 SGC 66.48 ± 0.20 63.29 ± 0.19 SIGN 69.32 ± 0.06 65.68 ± 0.06 SIGN-XL 70.32 ± 0.11 67.06 ± 0.17 SAGN 70.34 ± 0.99 66.75 ± 0.84 GAMLP 71.17 ± 0.14 67.71 ± 0.20 SAGN 71.63 ± 0.07 68.30 ± 0.08
SGC 66.48 ± 0.20 63.29 ± 0.19 SIGN 69.32 ± 0.06 65.68 ± 0.06 SIGN-XL 70.32 ± 0.11 67.06 ± 0.17 SAGN 70.34 ± 0.99 66.75 ± 0.84 GAMLP 71.17 ± 0.14 67.71 ± 0.20
SIGN 69.32 ± 0.06 65.68 ± 0.06 SIGN-XL 70.32 ± 0.11 67.06 ± 0.17 SAGN 70.34 ± 0.99 66.75 ± 0.84 GAMLP 71.17 ± 0.14 67.71 ± 0.20
SIGN-XL 70.32 ± 0.11 67.06 ± 0.17 SAGN 70.34 ± 0.99 66.75 ± 0.84 GAMLP 71.17 ± 0.14 67.71 ± 0.20
SAGN 70.34 ± 0.99 66.75 ± 0.84 GAMLP 71.17 ± 0.14 67.71 ± 0.20
GAMLP 71.17 ± 0.14 67.71 ± 0.20
SAGN $71.63 \pm 0.07 68.30 \pm 0.08$
GAMLP $71.59 \pm 0.05 68.25 \pm 0.11$
GAMLP $71.90 \pm 0.07 68.14 \pm 0.08$
m GAMLP $71.86 \pm 0.08 68.16 \pm 0.12$
+ SCR GAMLP 71.88 ± 0.07 68.42 ± 0.15

Experimental Results

Table 5: Classification accuracy with different GNNs as the base encoder on the ogbn-products dataset.



Applicability to various GNN architectures.

38

Summary

- GRAND
 - non-robust, over-smoothing, over-fit problems
 - random propagation + consistency regularization
- GRAND+
 - scalable version of GRAND
 - mini-batch random propagation with approximation
- SCR
 - simple and general method for GNNs

Homework 6: GRAND Implementation

- Experiments on GRAND:
 - Due by 21st Aug.
 - Implement GRAND with **consistency regularization**
 - Test GRAND on the cora dataset
 - Discuss on consistency regularization
- Find the homework material from the course website: <u>https://cogdl.ai/gnn2022/</u>
- Bonus: post your discussion to: <u>https://discuss.cogdl.ai/t/topic/83</u>.

Thank you!

Collaborators:

Zhenyu Hou, Yuxiao Dong, Jie Tang, et al. (THU) Qingfei Zhao, Xinije Zhang, Peng Zhang, et al. (Zhipu Al) Hongxiao Yang, Chang Zhou, et al. (Alibaba)

Yang Yang (ZJU)

Yukuo Cen, KEG, Tsinghua U. Online Discussion Forum https://github.com/THUDM/cogdl https://discuss.cogdl.ai/