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Semi-Supervised Learning on Graphs

Input: a partially labeled
& attributed graph

Output: infer the labels of
unlabeled nodes

?

?

??
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Graph Neural Networks (GNN)
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• Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks. In ICLR 2017

𝑯!"# = 𝜎 $𝑨𝑯 ! 𝑾 !

Normalized adjacency matrix

𝑯!"# = 𝜎 𝑾𝒍 '
%∈'())⋃)

𝑯𝒖𝒍

𝑁 𝑢 |𝑁(𝑣)|

Representation vector of the 𝑙 + 1-th layer Activation function (e.g. ReLU)

Feature propagation

Message Passing：

GCN
：

Non-linear transformation
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Potential Issues of GNNs

1. Each node is highly dependent with its neighborhoods,
making GNNs non-robust to noises

𝑯-"# = 𝜎 $𝑨𝑯 - 𝑾 -

a deterministic
propagation

𝑯!"# = 𝜎 '𝑨𝑯 ! 𝑾 !

4

?

Attacker
node

Perturbation

?
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• Zügner D, Akbarnejad A, Günnemann S. Adversarial attacks on neural networks for graph data. In KDD 2018.
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Potential Issues of GNNs

𝑯-"# = 𝜎 $𝑨𝑯 - 𝑾 -

feature propagation is
Laplacian smoothing,

coupled with
non-linear transformation

• Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for semi-supervised learning. In AAAI’18.
• Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node classification. In ICLR, 2020. 

1. Each node is highly dependent with its neighborhoods,
making GNNs non-robust to noises

2. Stacking many GNNs layers may cause over-smoothing.
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Potential Issues of GNNs

1. Each node is highly dependent with its neighborhoods, making GNNs non-
robust to noises

2. Stacking many GNNs layers may cause over-smoothing.
3. Under semi-supervised setting, standard training method is easy to over-fit

the scarce label information.

?

?
??

1
2

3

GNN

𝑯-"# = 𝜎 $𝑨𝑯 - 𝑾 -

Cannot fully leverage
unlabeled data

Standard training method for GNN:

Loss function:
𝒚𝟏"log %𝒚𝟏 + 𝒚𝟐"log %𝒚𝟐 + 𝒚𝟑"log %𝒚𝟑
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Recent advances in Semi-Supervised Learning

• Improving models’ generalization through image data
augmentation and consistency regularization.

(Picture from MixMatch’s paper)

Consistency regularization

• Berthelot D, Carlini N, Goodfellow I, et al. Mixmatch: A holistic approach to semi-supervised learning. In NIPS’19.
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Graph Random Neural Network (GRAND)

• Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. https://arxiv.org/abs/2005.11079, 2020
• Code & data for Grand: https://github.com/Grand20/grand

Consistency
Regularization

Augmented
features !𝑿

𝑺 Augmentations ?

• Consistency Regularized Training:
– Generates 𝑆 data augmentations of the graph
– Optimizing the consistency among 𝑆 augmentations of the graph.

Augmentation 1

Augmentation 𝑆

Optimize the
consistency

?

https://arxiv.org/abs/2005.11079
https://github.com/Grand20/grand
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Random Propagation in GRAND

• Random Propagation (DropNode + Propagation):
– Enhancing robustness: Each node is enabled to be not sensitive to specific

neighborhoods. 
– Mitigating over-smoothing and overfitting: Decouple feature propagation from

feature transformation.

Random Propagation

Augmented features

• Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. https://arxiv.org/abs/2005.11079, 2020
• Code & data for Grand: https://github.com/Grand20/grand

https://arxiv.org/abs/2005.11079
https://github.com/Grand20/grand
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Random propagation: DropNode vs Dropout

• Dropout drops each element in 𝑿 independently
• DropNode drops the entire features of selected nodes, i.e., 

the row vectors of 𝑿, randomly

• Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. https://arxiv.org/abs/2005.11079, 2020
• Code & data for Grand: https://github.com/Grand20/grand

https://arxiv.org/abs/2005.11079
https://github.com/Grand20/grand
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Consistency Regularization?

Consistency
RegularizationAugmented

features !𝑿

𝑺 Augmentations

Random Propagation as data augmentation

Optimize the
consistency

• Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. https://arxiv.org/abs/2005.11079, 2020
• Code & data for Grand: https://github.com/Grand20/grand

?

https://arxiv.org/abs/2005.11079
https://github.com/Grand20/grand
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GRAND: Consistency Regularization

Average

Sharpening

Distributions of
a node after

augmentations

• Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. https://arxiv.org/abs/2005.11079, 2020
• Code & data for Grand: https://github.com/Grand20/grand

https://arxiv.org/abs/2005.11079
https://github.com/Grand20/grand
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Training Algorithm of GRAND

Consistency Regularized Training Algorithm

• Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. https://arxiv.org/abs/2005.11079, 2020
• Code & data for Grand: https://github.com/Grand20/grand

Consistency
Regularization

Generate
𝑺 Augmentations

https://arxiv.org/abs/2005.11079
https://github.com/Grand20/grand
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GRAND Results

Instead of the marginal improvements by
conventional GNN baselines over GCN,
GRAND achieves much more significant
performance lift in all three datasets!

• Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. https://arxiv.org/abs/2005.11079, 2020
• Code & data for Grand: https://github.com/Grand20/grand

GCNs

Sampling
GCNs

Regularization
GCNs

https://arxiv.org/abs/2005.11079
https://github.com/Grand20/grand
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Results of Different Choices

Evaluation of the design choices in GRAND

• Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. https://arxiv.org/abs/2005.11079, 2020
• Code & data for Grand: https://github.com/Grand20/grand

https://arxiv.org/abs/2005.11079
https://github.com/Grand20/grand
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Ablation Study of GRAND

Ablation Study
1. Each of the designed components 

contributes to the success of GRAND.

2. GRAND w/o consistency regularization 
outperforms almost all 8 non-
regularization based GCNs & DropEdge

• Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. https://arxiv.org/abs/2005.11079, 2020
• Code & data for Grand: https://github.com/Grand20/grand

https://arxiv.org/abs/2005.11079
https://github.com/Grand20/grand
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Analysis of CR and RP

Generalization
1. Both the random propagation and consistency regularization improve 

GRAND’s generalization capability 

• Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. https://arxiv.org/abs/2005.11079, 2020
• Code & data for Grand: https://github.com/Grand20/grand

https://arxiv.org/abs/2005.11079
https://github.com/Grand20/grand
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Robustness Analysis

Robustness
1. GRAND (with or w/o) consistency regularization is more robust than GCN and GAT. 

• Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. https://arxiv.org/abs/2005.11079, 2020
• Code & data for Grand: https://github.com/Grand20/grand

https://arxiv.org/abs/2005.11079
https://github.com/Grand20/grand
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Over-smoothing Analysis

Over-Smoothing
1. GRAND is very powerful to relieve over-smoothing, when GCN & GAT are very 

vulnerable to it 

• Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. https://arxiv.org/abs/2005.11079, 2020
• Code & data for Grand: https://github.com/Grand20/grand

https://arxiv.org/abs/2005.11079
https://github.com/Grand20/grand
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GRAND+: Scalable Graph Random 
Neural Networks
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Review GRAND

• Random Propagation (DropNode + Propagation):
– Decouple the feature propagation from non-linear feature transformation.

– Propagate feature with a mixed-order adjacency matrix: 𝚷 = ∑./0' #
'"#

%𝐀.

– Use DropNode to randomly aggregate neighbors’ features

Random Propagation as graph data augmentation

Augmented featuresMixed-order PropagationDropNode

masksGraph Data

Feng W, Zhang J, Dong Y, et al. Graph random neural networks for semi-supervised learning on graphs[J]. Advances in neural information 
processing systems, 2020, 33: 22092-22103.
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Scalability limitation of GRAND

• Random Propagation in GRAND:

• "𝐗(") is calculated with power iteration:

'𝐗(1) = 𝚷 )𝐗(1), 𝚷 = +
./0

'
1

𝑁 + 1
%𝐀.

Weak Scalability:

• Time/Memory complexity:
O 𝐸 + V .

• Random propagation needs 
to be formed  for multiple 
times at each epoch.

%𝐀

)𝐗(1)

%𝐀 %𝐀

Average
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GRAND+: General Idea

• Mini-batch Radom Propagation:
– Select a batch of nodes at each training step, and generate 

augmented features by 

"𝐗$
(") = %

%∈𝒩"#
𝒛% ⋅ 𝚷(s, v) ⋅ 𝐗%, 𝒛𝒗 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(1 − 𝛿)

Non-zero elements in 𝚷𝐬

How to efficiently calculate the row vector 𝚷𝐬 ?

𝚷 = +
./0

'
1

𝑁 + 1
%𝐀.

DropNode mask
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GRAND+：Matrix approximation

!

"

#

$

%

𝚷𝟏 =
1

𝑁 + 1+
./0

'
%𝐀#. Random Walk Probability Diffusion Complexity: 𝑂( 𝐸 )
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&𝐀 = )𝐃.*)𝐀 is random walk
reverse transition matrix.
𝐏 s, v indicates the random 
walk probability from s to 𝑣. 
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GRAND+：Matrix approximation

Generalized Forward Push (GFPush)

&𝐀 = )𝐃.*)𝐀 is random walk
reverse transition matrix.
𝐏 s, v indicates the random 
walk probability from s to 𝑣. 
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GRAND+: Matrix approximation

• Approximation method:
– GFPush: Generate an error bounded approximation )𝚷𝐬 for 𝚷𝐬.
– Top-k sparsification: Truncate )𝚷𝐬 for top-k elements.

Approximation row vectors

!"!
!""
!"#
!"$

! " # $ % & '

Sparsified row vectors

!"!(&)

!""
(&)

!"#
(&)

!"$(&)

! " # $ % & '
Top-k

sparsification
GFPush!

"
#

$

%
&

'
9 6 2

2 2 8

1 3 7

3 1 6 6 7 2

5 6 5

7 8 1
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GRAND+: Mini-batch Radom Propagation

• Mini-batch Random Propagation with Approximation:

'𝐗4
(1) = +

)∈𝒩(
(*)

𝒛) ⋅ )𝚷(-)(s, v) ⋅ 𝐗), 𝒛𝒗 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(1 − 𝛿)

Non-zero elements in )𝚷𝒗
(4)

• Prediction:
C𝐘(1) = MLP('𝐗4

(1), Θ)

With batch size as b, the time complexity is Ο(𝑏 ⋅ 𝑘), which is independent of graph size

Scalability: Adopt GFPush to approximately calculate the propagation matrix
，and adopt mini-batch method for model training
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GRAND+: Propagation matrix

• Generalized Mixed-order Matrix:

𝚷 =∑!"#$ 𝑤!$𝐀!， $𝐀 = '𝐃%&'𝐀

Flexibility: Using a set of tunable weights 𝑤7 0 ≤ 𝑡 ≤ 𝑇 to control the 
importance of different orders of neighborhoods

• Propagation Matrix in GRAND:

𝚷 =∑!"#$ &
$'&

$𝐀!， $𝐀 = '𝐃%&'𝐀
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Confidence-aware Consistency Regularization

• Confidence-aware Consistency Loss：

Confidence term: Filter out unlabeled nodes that have low confidence

Effectiveness: Further improving prediction performance
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GRAND+ Architecture

GRAND+: Better scalability & generalization capability

Parallelization by OpenMP
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GRAND+ Experiments

Better generalization performance: Achieves
2.3% improvements over GRAND on Pubmed.
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GRAND+ Experiments

Scalability:
• 40 times faster than GRAND on Aminer-CS.
• 8 times faster than FastGCN on MAG.
• 12 times faster than GraphSAINT on MAG.
• Achieves comparable running time and 4.9%

improvement than PPRGo on MAG.  
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Parameter Analysis
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SCR: Training Graph Neural Networks 
with Consistency Regularization
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The SCR Framework

• Noisy Prediction Generation: Get multiple predictions with
different dropout masks

• Pseudo Labeling: obtain pseudo labels for unlabeled data
• SCR: averages the noisy predictions
• SCR-m: exploits an EMA teacher encoder
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The SCR Framework

Pseudo label sharpening:
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+0.41%

+0.12%
+0.37%

SCR Results on OGB.
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Experimental Results

Applicability to various GNN	architectures.

Comparison	with	RLU.

SCR converges faster than multi-stage self-training.
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Summary

• GRAND
– non-robust, over-smoothing, over-fit problems
– random propagation + consistency regularization

• GRAND+
– scalable version of GRAND
– mini-batch random propagation with approximation

• SCR
– simple and general method for GNNs
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Homework 6: GRAND Implementation

• Experiments on GRAND:
– Due by 21st Aug.
– Implement GRAND with consistency regularization
– Test GRAND on the cora dataset
– Discuss on consistency regularization

• Find the homework material from the course website: 
https://cogdl.ai/gnn2022/

• Bonus: post your discussion to: 
https://discuss.cogdl.ai/t/topic/83 . 

https://cogdl.ai/gnn2022/
https://discuss.cogdl.ai/t/topic/83
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Yukuo Cen, KEG, Tsinghua U.                https://github.com/THUDM/cogdl
Online Discussion Forum https://discuss.cogdl.ai/

Thank you！
Collaborators:

Zhenyu Hou, Yuxiao Dong, Jie Tang, et al. (THU)
Qingfei Zhao, Xinije Zhang, Peng Zhang, et al. (Zhipu AI)

Hongxiao Yang, Chang Zhou, et al. (Alibaba)
Yang Yang (ZJU)

https://github.com/THUDM/cogdl
https://discuss.cogdl.ai/

