
1

Simplified Graph Neural Networks

Yukuo Cen
GNN Center, Zhipu AI

KEG, Tsinghua University
Advisors: Yuxiao Dong, Jie Tang

Course Link: https://cogdl.ai/gnn2022/
CogDL is publicly available at       https://github.com/THUDM/cogdl

https://cogdl.ai/gnn2022/
https://github.com/THUDM/cogdl


2

Review GCNs

1. Kipf et al. Semi-supervised Classification with Graph Convolutional Networks. ICLR 2017

• Layer-wise propagation:
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Review GCNs

• GCN
– Feature propagation
– Linear transformation
– Nonlinearity

Question: How to train GCNs 
on large-scale graphs?
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SGC vs GCN

Wu, Felix, et al. "Simplifying graph convolutional networks." International conference on machine learning. In ICLR 2019.

• SGC:
– Removing the nonlinearities between GCN layers 
– More analysis on low-pass filtering
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SGC

• Linearization
• Hypothesize that the nonlinearity between GCN layers 

is not critical. 
• Therefore remove the nonlinear transition functions 

between each layer

Where equation(2) is the simplified version of equation(1), which we 
refer to as Simple Graph Convolution (SGC)
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Review Spectral Graph Convolutions

• Graph Laplacian

• Spectral graph convolution

• Truncated by k-order polynomials

• Simplifying via k=1
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Spectral Analysis on SGC

• Low-Pass Filtering on SGC
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SGC

• Efficiency

Ø SGC uses less computational resources and achieves relatively higher 
performance

Ø SKX part is computed in advance to save memory, hence only parameter 
matrix Θ needs to be learned during training process
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SGC Results

• Performance

• The performance of SGC can 
match the performance of GCN 
and state-of-the-art graph 
networks on citation networks. 

• In particular on Citeseer, SGC is 
about 1% better than GCN, and 
we reason this performance 
boost is caused by SGC having 
fewer parameters and therefore 
suffering less from overfitting
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SGC Results

• Performance

On Reddit, Table 3 shows that 
SGC outperforms the previous 
sampling-based GCN variants, 
SAGE-GCN and FastGCN by 
more than 1%.
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More SGC Results

Text classification
User geolocation
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SIGN

• Motivation
– Scale to very large graphs such as Twitter social networks
– Combine graph convolutional filters of different types

• Overall results
– Performs SOTA results on ogbn-papers100M (110 millions 

node + 1.5 billion edges)

Frasca, Fabrizio, et al. "Sign: Scalable inception graph neural networks." arXiv preprint arXiv:2004.11198 (2020).
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SIGN

• I,A1,…,Ar denote different operators

• Θ denotes learnable parameters, used to perform 
linear transformation
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SIGN

Overall formulation of the SIGN

• Inspired by CNN inception-like module, different 
operators I,A1,…,Ar can capture different graph features

• A1X…ArX can be pre-computed, which tremendously 
reduce the computational complexity
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Generailization to GCNs

• In particular, by setting the σ non-linearity to PReLU , 
ChebNet, GCN, and S-GCN can be automatically learnt if 
suitable diffusion operator B and activation ξ are used.
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Datasets used by SIGN

• Seven datasets with different scales
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SIGN results

• Performance of SIGN and other scalable methods on 
the inductive node classification task.
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SIGN results on ogbn datasets
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Efficiency of SIGN

• Up to two orders of magnitude faster than ClusterGCN and 
GraphSAINT at inference time, while also being significantly 
faster at training time 
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SAGN

• SAGN uses attention mechanism to replace the simple concatenation in SIGN, 
which enables the model to capture more important information

Sun, Chuxiong, Hongming Gu, and Jie Hu. "Scalable and adaptive graph neural networks with self-label-enhanced training." arXiv 
preprint arXiv:2104.09376 (2021).
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Datasets used by SAGN

• four inductive datasets + three ogbn datasets
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SAGN Results on inductive datasets
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SAGN Results on ogbn datasets
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SAGN Results on ogbn-mag
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Runtime and Efficiency of SAGN

• SIGN and SAGN have very close runtime in both training and inference 
process, as expected in complexity analysis. 

• SAGN has 10% smaller memory cost and 36% less parameters 
compared with SIGN
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GAMLP

• Observation:

• Different nodes may need different propagation steps!
• Use attention!

Zhang, Wentao, et al. “Graph attention multi-layer perceptron.” In KDD 2022.
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GAMLP

• Combine feature and label information:
• Node-wise feature propagation
• Node-wise label propagation
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Node-adaptive Attention Mechanisms

• JK Attention
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Node-adaptive Attention Mechanisms

• Recursive Attention

Using the recursive method, when calculating the weight assigned to the 
node features propagated after L steps, the fused node features of the 
previous (L-1) steps are considered as the reference vector
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Complexity Analysis

𝑛, 𝑚, 𝑐, and 𝑓 are the number of nodes, edges, classes, and feature 
dimensions, respectively. 𝑏 is the batch size, and 𝑘 refers to the number of 
sampled nodes. 𝐾 and 𝐿 corresponds to the number of times we aggregate 
features and labels. Besides, 𝑃 and 𝑄 are the number of layers in MLP 
classifiers trained with features and labels.
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GAMLP Results

• Experiment on Small datasets
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GAMLP Results

• Experiments on ogbn datasets
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GAMLP Results

• Experiments on inductive datasets
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GAMLP Results

• Performance on Sparse Graphs
– Edge sparsity or label sparsity
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Applications on Tencent
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Summary

• SGC
– Remove the linearity (scale to large datasets)
– Low-pass filtering analysis

• SIGN
– Combine filters of different types and sizes

• SAGN + GAMLP
– Learnable attention weights between multiple hops
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Homework 4: SIGN Implementation

• Experiments on SIGN:
– Due by 7th Aug.
– Implement SIGN model based on CogDL
– Test SIGN model on the cora dataset
– Give the analysis of the results

• Find the homework material from the course website: 
https://cogdl.ai/gnn2022/

• Bonus: summarize these simplified GNNs on: 
https://discuss.cogdl.ai/t/topic/67. 

https://cogdl.ai/gnn2022/
https://discuss.cogdl.ai/t/topic/67
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Yukuo Cen, KEG, Tsinghua U.                https://github.com/THUDM/cogdl
Online Discussion Forum https://discuss.cogdl.ai/

Thank you！
Collaborators:

Zhenyu Hou, Yuxiao Dong, Jie Tang, et al. (THU)
Qingfei Zhao, Xinije Zhang, Peng Zhang, et al. (Zhipu AI)

Hongxiao Yang, Chang Zhou, et al. (Alibaba)
Yang Yang (ZJU)

https://github.com/THUDM/cogdl
https://discuss.cogdl.ai/

