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Review GCNs
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1. Kipf et al. Semi-supervised Classification with Graph Convolutional Networks. ICLR 2017



Review GCNs

e« GCN s#H".A)=0c(AH"W?)
— Feature propagation

— Linear transformation Question: How to train GCNs

— Nonlinearity on large-scale graphs?
’ |
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SGC vs GCN
« SGC:

— Removing the nonlinearities between GCN layers
— More analysis on low-pass filtering

Simplifying Graph Convolutional Networks
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Figure 1. Schematic layout of a GCN v.s. a SGC. Top row: The GCN transforms the feature vectors repeatedly throughout K layers
and then applies a linear classifier on the final representation. Botfom row: the SGC reduces the entire procedure to a simple feature
propagation step followed by standard logistic regression.

Wu, Felix, et al. "Simplifying graph convolutional networks." International conference on machine learning. In ICLR 2019.



SGC

 Linearization

« Hypothesize that the nonlinearity between GCN layers

IS not critical.
 Therefore remove the nonlinear transition functions

between each layer

Y = softmax(S...SSXVeWe® o)

Ysao = softmax(S* X©)

Where equation(2) is the simplified version of equation(1), which we
refer to as Simple Graph Convolution (SGC)



Review Spectral Graph Convolutions

Graph Laplacian
A=D-A=UAUT Ay,=D"12AD"1/2

Spectral graph convolution
g+xx=U((U'g)®(U'x)) =UGU x,

Truncated by k-order polynomials

k k
UGU'x~ ) 6;A’x=TU (Z 9,,;A"'> U'x,
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Simplifying via k=1

gxx=0I+D Y2AD/2)x.



Spectral Analysis on SGC

* Low-Pass Filtering on SGC

Sl-order = 1 + D_l/zAD_1/2 = 21— Asym
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Figure 2. Feature (red) and filters (blue) spectral coefficients for different propagation matrices on Cora dataset (3rd feature).



SGC
» Efficiency

Simplifying Graph Convolutional Networks
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Figure 3. Performance over training time on Pubmed and Reddit. SGC is the fastest while achieving competitive performance. We are not
able to benchmark the training time of GaAN and DGI on Reddit because the implementations are not released.

» SGC uses less computational resources and achieves relatively higher
performance

» SKX part is computed in advance to save memory, hence only parameter
matrix © needs to be learned during training process



SGC Results

Table 2. Test accuracy (%) averaged over 10 runs on citation net-
works. We remove the outliers (accuracy < 75/65/75%) when
calculating their statistics due to high variance.

« Performance

| Cora | Citescer | Pubmed
« The performance of SGC can N : :
umbers from literature:
match the performance of GCN GCN 81.5 70.3 79.0

GAT 83.0+0.7 | 725+0.7 | 79.0+0.3
and State-of-the-e.lrt graph GLN 81.24+0.1 | 7094+0.1 | 78.940.1
networks on citation networks. AGNN 83.1+0.1 | 71.74+0.1 | 79.94+0.1
LNet 7954+1.8 | 662+1.9 | 78.3+0.3
AdaLNet | 80.44+1.1 | 68.74+1.0 | 78.14+0.4
* In particular on Citeseer, SGC is geGeIPWaIk gg; ;—L 82‘ %g ;—L 8? Zgg ;—L 82

about 1% better than GCN, and - — —

. Our experiments:

we reason this performance GCN 81.44+0.4 | 709405 | 79.040.4
: : GAT 83.34+0.7 | 726+0.6 | 78.5+0.3
boost is caused by SGC having FastGCN | 79.840.3 | 688406 | 77.4+0.3
fewer parameters and therefore GIN 77.6+1.1 | 66.14+0.9 | 77.0+1.2
: T LNet 80.2+3.0" | 67.3+0.5 | 783+ 0.6
Sufferlng less from overflttlng AdalNet | 81.9+1.9" | 70.6 £0.8" | 77.8 £ 0.77
DGI 82.54+0.7 | 71.6+0.7 | 78.44+0.7
SGC 81.04+0.0 | 71.94+0.1 | 78.940.0
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SGC Results

* Performance

Table 3. Test Micro F1 Score (%) averaged over 10 runs on Red-
dit. Performances of models are cited from their original papers.
OOM: Out of memory.

On Reddit, Table 3 shows that
SGC outperforms the previous

sampling-based GCN variants,
SAGE-GCN and FastGCN by
more than 1%.

Setting | Model Test F1
GaAN 96.4
SAGE-mean 95.0
Supervised SAGE-LSTM 95.4
SAGE-GCN 93.0
FastGCN 93.7
GCN OOM
SAGE-mean 89.7
Unsupervised | SAGE-LSTM 90.7
SAGE-GCN 90.8
DGI 94.0
. Random-Init DGI | 93.3
No Learning SGC 94.9

Dataset | #Nodes #Edges Train/Dev/Test Nodes
Cora 2,708 5,429 140/500/1, 000
Citeseer | 3,327 4,732 120/500/1, 000
Pubmed | 19,717 44,338 60/500/1, 000
Reddit | 233K 11.6M 152K/24K/55K

10



More SGC Results

Text classification _
User geolocation

Table 4. Test Accuracy (%) on text classification datasets. The

numbers are averaged over 10 runs. Table 5. Test accuracy (%) within 161 miles on semi-supervised

Dataset | Model | Test Acc.t Time (seconds) | user geolocation. The numbers are averaged over 5 runs.
20NG GCN 87.9+0.2 1205.1 +144.5 Dataset | Model | Acc.@1611 Time |
RS GCN | 97.0+0.2 129.6 +£ 9.9 SGC 61.1 £0.1 5.6s
SGC 97.2+0.1 1.90 & 0.03
s | SOV | 09502 o
RS2 GCN 93.8+0.2 245.0 +13.0 . . m
SGC 94.0+0.2 3.01 £0.01
rwrrTwoRLp | SOV | 31802 24gm m
Ohsumed GCN 68.2+0.4 252.4 +14.7 : :
SGC 68.5+0.3 3.02 £+ 0.02
MR GCN 76.3 £ 0.3 16.1 =04
SGC 75.94+0.3 4.00 £+ 0.04




SIGN

 Motivation

— Scale to very large graphs such as Twitter social networks
— Combine graph convolutional filters of different types

e Qverall results

— Performs SOTA results on ogbn-papers100M (110 millions
node + 1.5 billion edges)

Frasca, Fabrizio, et al. "Sign: Scalable inception graph neural networks." arXiv preprint arXiv:2004.11198 (2020).
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SIGN

X
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Figure 1: The SIGN architecture for r generic graph filtering operators. @ represents the k-th dense
layer transforming node-wise features downstream the application of operator k, | is the concatenation
operation and 2 refers to the dense layer used to compute final predictions.

* ILA,,...,A, denote different operators

« O denotes learnable parameters, used to perform
linear transformation
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SIGN

Overall formulation of the SIGN

o ([XOp,A1XO;,...,A,X0O,))
§(282),

Z
Y

* Inspired by CNN inception-like module, different
operators |,A,,...,A. can capture different graph features

« A X...AX can be pre-computed, which tremendously
reduce the computational complexity

14



Generailization to GCNs

Table 2: By appropriate configuration, SIGN inception layer is able to replicate some popular graph
convolutional layers. « represents the learnable parameter of a PReLLU activation.
Bl,...,Br (87 @0,...,@7- Q
ChebNet [15] | A,...,A” 1 0,,...,0, [I,....I'
GCN [34] r=1, A 1 0,0 (0,1]7
S-GCN [59] r=1, AL 1 0,0 [0,1]7

* |n particular, by setting the o non-linearity to PRelLU ,
ChebNet, GCN, and S-GCN can be automatically learnt if
suitable diffusion operator B and activation ¢ are used.

15



Datasets used by SIGN

« Seven datasets with different scales

Table 3: Summary of (s)ingle and (m)ulti-label dataset statistics. Wikipedia is used, with random
features, for timing purposes only.

n &| Avg. Deg. d  Classes Train/ Val / Test
Wikipedia 12,150,976 378,142,420 62 100 2(s) 100% / — / 100%
ogbn-papers100M | 111,059,956 1,615,685,872 30 128  172(s) 78% [ 8% | 14%
ogbn-products 2,449,029 61,859,140 51 100 47(s) 10% / 2% | 88%
Reddit 232,965 11,606,919 50 602  41(s) 66% / 10% / 24%
Yelp 716,847 6,977,410 10 300 100(m) 75%/10% /15%
Flickr 89,250 899,756 10 500 7(s) 50% /25% | 25%
PPI 14,755 225,270 15 50 121(m) 66% /12% /22%
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SIGN results

 Performance of SIGN and other scalable methods on
the inductive node classification task.

Table 5: Micro-averaged F1 scores. For SIGN, we show the best performing configurations. The top
three performance scores are highlighted as: First, Second, Third.

Reddit Flickr PPI Yelp

GCN [34] 0.933+0.000 0.492+0.003 0.51540.006 0.378=+0.001
FastGCN [11] 0.924+0.001 0.504+0.001 0.513+0.032 0.265+0.053
Stochastic-GCN [12] | 0.964+£0.001 0.482+£0.003 0.963+0.010 0.640+0.002
AS-GCN [30] 0.958+0.001 0.504+0.002 0.687+0.012 —
GraphSAGE [24] 0.953+0.001 0.501£0.013 0.637+0.006 0.634+0.006
ClusterGCN [13] 0.9544+0.001 0.481+0.005 0.87540.004 0.609+0.005
GraphSAINT [64] 0.966+0.001 0.511+0.001 0.981+0.004 0.653-+0.003
S-GCN [59] 0.949+0.000 0.502+0.001 0.892+0.015 0.358=+0.006
SIGN 0.968+0.000 0.514+0.001 0.970+0.003 0.631+0.003
(p, s, t) (4,2,0) (4,0,1) (2,0,1) (2,0,1)
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SIGN results on ogbn datasets

Table 6: Performance on ogbn-products. SIGN(p,s,t) refers to a configuration using p, s, and ¢
powers of simple, PPR-based, and triangle-based adjacency matrices. The top three performance

scores are highlighted as: First, Second, Third.

Training Validation Test
MLP 84.03+0.93 75.54+0.14 61.06+0.08
Node2Vec 93.3940.10 90.324+0.06 72.49+0.10
S-GCN(L=5) | 92.54+0.09 91.384+0.07 74.8740.25
ClusterGCN | 93.754+0.13 92.124+0.09 78.97-+0.33
GraphSAINT | 92.71£0.14 91.62+0.08 79.08+0.24
SIGN(3,0,0) | 96.21+0.31 92.99+0.05 76.52+0.14
SIGN(3,0,1) | 96.46+0.29 92.93+0.04 75.734+0.20
SIGN(3,3,0) | 96.87+0.23 93.02+0.04 77.1340.10
SIGN(5,0,0) | 95.9940.69 92.98+0.18 76.83+0.39
SIGN(5,3,0) | 96.92+0.46 93.10+0.08 77.60+0.13

Table 8: Results on ogbn-papers100M, the largest public graph dataset with over 110 million nodes.
SIGN(p,d, f) refers to a configuration using p, d, and f powers of simple undirected, directed and
directed-transposed adjacency matrices. The top three performance scores are highlighted as: First,

Second, Third.

Training Validation Test
MLP 54.844+0.43 49.60+0.29 47.24+0.31
Node2Vec — 55.604+0.23  58.07+0.28
S-GCN(L=3) | 67.54+0.43 66.48+0.20 63.29+0.19
SIGN(3,0,0) | 70.18+0.37 67.57+0.14 64.28+0.14
SIGN(3,1,1) | 72.24+0.32 67.76+0.09 64.391+0.18
SIGN(3,3,3) | 73.94+0.72 68.6+0.04 65.11+0.14

18



Efficiency of SIGN

« Up to two orders of magnitude faster than ClusterGCN and
GraphSAINT at inference time, while also being significantly
faster at training time
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Figure 2: Architecture of SAGN. The multi-hop encoders and post encoder are depicted in form of
MLP. The bottom "linear" refers to the residual linear layer. The symbol () represents the operation
of summing integrated representation and residual term.

« SAGN uses attention mechanism to replace the simple concatenation in SIGN,
which enables the model to capture more important information

Sun, Chuxiong, Hongming Gu, and Jie Hu. "Scalable and adaptive graph neural networks with self-label-enhanced training." arXiv
preprint arXiv:2104.09376 (2021).
20



Datasets used by SAGN

 four inductive datasets + three ogbn datasets

Table 1: Summary of datasets. For classes, there are single (s) label classification task and multiple

(m) label classification task.

Dataset Nodes Edges Classes Train/Val/Test Setting

Reddit 232,965 11,606,919  41(s) 66%/10% /24% Inductive
Yelp 716,847 6,977,410 100(m) 75% /10% / 15%  Inductive
Flickr 89,250 899,756 7(s) 50% /25% /25% Inductive
PPI 14,755 225,270 121(m) 66% /12% /22%  Inductive

ogbn-products 2,449,029 61,859,140 47(s) 10% /2% /88% Transductive
ogbn-papers100M 111,059,956 1,615,685,872 172(s) 78% /8% / 14% Transductive
ogbn-mag 1,939,743 21,111,007 349(s) 85% /9% /6% Transductive

21



SAGN Results on inductive datasets

Table 2: Results on inductive datasets. The means and standard deviations of micro-F1 score over 10
runs are reported. The best results are highlighted in bold fonts.

Method Reddit Flickr PPI Yelp
GCN [1] 93.3+0.0% 49.2+0.3% 51.5+0.6% 37.8+0.1%
FastGCN [16] 92.44+0.1% 50.4+0.1% 51.3%3.2% 26.5+5.3%
Stochastic-GCN [17] 96.4+0.1% 48.2+0.3% 96.3x1.0% 64.0+0.2%

AS-GCN [15] 95.840.1% 50.4+0.2% 68.7+x1.2% —

GraphSAGE [13] 95.3+0.1% 50.1x1.3% 63.7£0.6% 63.4+0.6%
ClusterGCN [19] 954+0.1% 48.1+0.5% 87.5+0.4% 60.9+0.5%
GraphSaint [20] 96.6+0.1% 51.1+0.1% 98.1+0.4% 65.3+0.3%
SGC [21] 94.9+0.0% 50.2+0.1% 89.2+1.5% 35.8+0.6%
SIGN [22] 96.8+0.0% 51.4+0.1% 97.0x0.3% 63.1+£0.3%
SAGN 96.9+0.0% 51.4+1.2% 97.9+0.1% 65.3+0.1%
SAGN+1-SLE 97.1+0.0% 54.3+0.5% 98.0+0.1% 65.3£0.1%
SAGN+2-SLE 97.1+0.0% 54.6x0.4% 98.0+0.1% 65.3+0.1%
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SAGN Results on ogbn datasets

Table 3: Results on transductive datasets. The means and standard deviations of validation and test
accuracies over 10 runs are reported. The best results are highlighted in bold fonts.

ogbn-products ogbn-papers100M
Method Validation Test Validation Test
MLP 75.54+0.14% 61.06+0.08%  49.60+0.29% 47.24+0.31%
Node2Vec [46, 49] 90.32+0.06%  72.49+0.10% 58.07+0.28%  55.60+0.23%
GCN [1, 46] 92.00+0.03%  75.64+0.21% — —
GraphSAGE [13, 46] 92.24+0.07%  78.50+0.14% — —
NeighborSampling [13,46] 91.70+0.09%  78.70+0.36% — —
ClusterGCN [19] 92.12+0.09%  78.97+0.33% — —
GraphSaint [20] — 80.27+0.26% — —
SIGN [22, 54] 02.86+0.02% 80.52+0.13% 69.32+0.06% 65.68+0.06%
SAGN 93.09+0.04% 81.20+0.07% 70.34+0.99%  66.75+0.84%
SAGN+1-SE 92.54+0.04%  82.23+0.09% 70.79+0.12% 67.21+0.12%
SAGN+2-SE 92.33+0.03% 82.50+0.13% 70.89+0.12% 67.30+0.15%
UniMP 93.08+0.17%  82.56+0.31% 71.7240.05% 67.36+0.10%
MLP+C&S 91.47+0.09% 84.18+0.07% — —
SAGN+0-SLE 03.27+0.04%  83.29+0.18% 71.06£0.08% 67.55+0.15%
SAGN+1-SLE 93.06£0.07% 84.18+0.14% 71.23+0.10% 67.77+0.15%
SAGN+2-SLE 92.87+0.03% 84.28+0.14% 71.31+0.10% 68.00+0.15%
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SAGN Results on ogbn-mag

Table 7: Results on ogbn-mag. Validation and test accuracies with means and standard deviations (%)
are reported. The best results in homogeneous and heterogeneous settings are highlighted in bold

fonts.

Method Validation Test
MLP 26.26+0.16% 26.92+0.26%
GCN 29.53+£0.22%  30.43+0.25%
GraphSAGE 30.70£0.19% 31.53+0.15%
SIGN 40.68+0.10% 40.46+0.12%
SAGN+0-SLE 42.13+0.51% 40.51+0.83%
SAGN+1-SLE 43.85+0.49% 42.18+0.61%
SAGN+2-SLE 44.27+0.30% 42.75+0.38%
MetaPath2Vec 35.06+0.17%  35.44+0.36%
R-GCN 40.84+0.41% 39.77+0.46%
NeighborSampling 47.61+£0.68% 46.78+0.67%
ClusterGCN 38.40+0.31% 37.32+0.37%
GraphSaint 48.37+0.26% 47.51+0.22%
NARS 53.72+#0.09%  52.40+0.16%
SAGN+TransE+0-SLE  49.42+0.17%  47.95+0.25%

SAGN+TransE+1-SLE
SAGN+TransE+2-SLE
NARS_SAGN+0-SLE
NARS_SAGN+1-SLE
NARS_SAGN+2-SLE

51.23+0.16%
51.80%0.15%
54.12+0.15%
55.52+0.16%
55.91+0.17%

49.70+0.17%
50.29+0.16%
52.3240.25%
53.95+0.14%
54.40+0.15%
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Runtime and Efficiency of SAGN

Table 5: Runtime experiments on ogbn-products. The runtimes (seconds) with means and standard
deviations, memory costs (Mb) and parameter numbers over 10 runs are reported. SIGN+SLE is not
reported due to out-of-memory (OOM) error.

Method Training Inference = Memory Parameters
MLP 0.67+0.04s 7.78+0.25s 10832Mb 669743
SIGN 1.27£0.10s  8.68+0.64s 15558Mb 3489847

SAGN 1.12+0.01s  8.43+0.22s 13948Mb 2233391

MLP+0-SLE  0.76+£0.03s  7.85+0.30s 11958Mb 1181278
SAGN+0-SLE 1.47+0.01s 8.35+0.33s 14894Mb 2810462

« SIGN and SAGN have very close runtime in both training and inference
process, as expected in complexity analysis.

« SAGN has 10% smaller memory cost and 36% less parameters
compared with SIGN

25



GAMLP

 Observation:

S~ U»

#Steps

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

(a) Inconsistent optimal steps.

0.0

@ Labeled nodes in dense region
© Labeled nodes in sparse region
© Unlabeled nodes in RF

O Unlabeled and unused nodes

(b) Inconsistent RF expansion speed.

Figure 1: (Left) Test accuracy of SGC on 20 randomly sampled nodes of Citeseer. The X-axis is the node id, and Y-axis is the
propagation steps. The color from white to blue represents the ratio of being predicted correctly in 50 different runs. (Right)

The node in the dense region has a larger RF within two iterations of propagation.

« Different nodes may need different propagation steps!

 Use attention!

Zhang, Wentao, et al. “Graph attention multi-layer perceptron.” In KDD 2022.
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GAMLP

 Combine feature and label information:
* Node-wise feature propagation x® «— Ax*b, vk=1,...,K
 Node-wise label propagation  y® — Ay¢-D vi=1,....L

K L
HX = ZWkX(k) HY = Z WlY(l)
k=0 1=0

Last Residual

1.Propagate

W, W Wl | W
l “ ' l 1l 0l 2. Combine
@[ mp 1 @ mLr 2 -E- 3. Train

Node-wise Feature Propagation Outputs Node-wise Label Propagation

Figure 2: Overview of the proposed GAMLP, including (1) feature and label propagation, (2) combine the propagated features
and labels with RF attention, and (3) MLP training. Note that both the feature and label propagation can be pre-processed.
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Node-adaptive Attention Mechanisms

JK Attention

X =xD B, W) =6XP -s), w(z)—eWzU)/Z e Vi (k)

E; = MLP(X') || X2 || .. | x(5)

e 9
© @ @ .. ®
. S X X X Precomputed Propagated Features

Figure 5: The architecture of GAMLP with JK Attention.
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Node-adaptive Attention Mechanisms

 Recursive Attention

-1 1
)’zgl) — Xgl) ” Z Wl(k)xfk), wj (k) — eWi(k) /Z ewi(j),
k=0 =0

wi(l) = 8(X.s)

Using the recursive method, when calculating the weight assigned to the
node features propagated after L steps, the fused node features of the
previous (L-1) steps are considered as the reference vector

29



Complexity Analysis

Type Method Pre-processing Training Memory
GraphSAGE - O (kXnf?) O(bkX f + Kf?)
Sampling FastGCN - O(kKnf?) O(bkKf + Kf?)
Cluster-GCN O(m) O(Pmf + Pnf?) O(bKf +Kf?)
Graph-wise propagation SGC O(Kmf) O(nf?) O(bf + f?)
SIGN O (Kmf) O(Pnf?) O(bLf +Pf*)
Layer-wise propagation S2GC O(Kmf) O(nf?) O(bf + f?)
GBP O(Knf + K Y8y O (Pnf?) O(bf +Pf?)
Node-wise propagation GAMLP O(Kmf + Lmc) O(Pnf?+Qnc?) | O(bf + Pf? + Qc?)

n, m, ¢, and f are the number of nodes, edges, classes, and feature
dimensions, respectively. b is the batch size, and k refers to the number of
sampled nodes. K and L corresponds to the number of times we aggregate

features and labels. Besides, P and Q are the number of layers in MLP
classifiers trained with features and labels.




GAMLP Results

« Experiment on Small datasets

Table 2: Transductive performance on citation networks. Table 3: Transductive performance on the co-authorship

and co-purchase graphs.

Methods ] Cora Citeseer PubMed
GCN 81.8405 70.8+05 79.3+0.7 Methods CAma”“ Amazon  Coauthor ~ Coauthor
omputer Photo Cs Physics

GAT 83.0+0.7 72.5+0.7 79.0+0.3
JK-Net 818405 707407  78.8+0.7 GCN 824404  91.240.6  90.7+0.2  92.7+1.1
GON 899506 708407  783:0.6 GAT 80.140.6  90.8+1.0  87.4+02  90.2+1.4
Res =0 6=xU. ~DxU. JK-Net 82.040.6  91.9+0.7  89.5+0.6  92.5+0.4
APPNP 83.3+£0.5 71.8+0.5 80.1+0.2 ResGCN 811407  91.3+0.9  87.940.6  92.2+15
AP-GCN 83.4+0.3 71.3+0.5 79.7+0.3 APPNP 81.7+0.3 91.4+0.3 92.1+0.4 92.8+0.9
SGC 81.0+0.2 71.3+05 78.9+0.5 AP-GCN 83.740.6 921403  91.6+07  93.1+0.9
SIGN 82.1+0.3 72.4+0.8 79.54+0.5 SGC 82.2+0.9 91.6+0.7 90.3+0.5 91.7+1.1
ey | s 7 s s
GBP 83.9£0.7 72.9+0.5  80.6+0.4 GBP 835408 921408 923204 933407
GAMLP(JK) | 84.3+0.8 74.6+0.4 80.7+0.4 GAMLP(JK) | 84.5+0.7 92.8+0.7 92.6405  93.6+1.0
GAMLP(R) | 83.9+0.6 73.9+0.6 80.8+0.5 GAMLP(R) | 84.2+05  92.6+0.8 92.8+0.7  93.2+1.0
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GAMLP Results

« Experiments on ogbn datasets

Table 4: Performance comparison on ogbn-products.

Methods Val Accuracy Test Accuracy Table 5: Performance comparison on ogbn-papers100M.
GCN 92.00+0.03 75.64+0.21
SGC 92.13+0.02 75.87+0.14 Methods Val Accuracy Test Accuracy
grap}tlssﬁlg?r g;’;gfg'gg giggfg;‘; SGC 66.480.20 63.29+0.19
rap DeEn arEn SIGN 69.3240.06 65.68+0.06
GBP 92.82+0.10 80.48+0.05 SIGN-XL 69.8440.06 66.0640.19
SIGN 92.99+0.04 80.52+0.16 SAG-N 70'34_0'99 66.75_0.84
DeeperGCN | 92.38+0.09 80.98+0.20 >a£0. 90
UniMP 93.08+0.17 82.56+0.31 SAGN+0-SLE 71.06£0.08 67.55+0.15
SAGN 93.09+0.04 81.20+0.07 GAMLP(JK) 71.92+0.04 68.07+0.10
SAGN+0-SLE 93.27+0.04 83.29+0.18 GAMLP(R) 71.21+0.03 67.46+0.02
GAMLP(JK) 93.19+0.03 83.54+0.25
GAMLP(R) 93.11+0.05 83.59+0.09
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GAMLP Results

« Experiments on inductive datasets

Table 6: Performance comparison on three inductive

datasets.
Methods PPI Flickr Reddit

SGC 65.7+0.01 50.2+0.12 94.9+0.00

GraphSAGE 61.2+0.05 50.1+0.13 95.4+0.01

Cluster-GCN 99.2+0.04 48.1+0.05 95.7+0.00

GraphSAINT 99.4+0.03 51.1+0.10 96.6+0.01

GAMLP(JK) 99.82+0.01 54.12+0.01 97.04+0.01

GAMLP(R) 99.66+0.01 53.12+0.00 96.62+0.01
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GAMLP Results

Performance on Sparse Graphs
— Edge sparsity or label sparsity
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Figure 3: Test accuracy on PubMed dataset under different
levels of label and edge sparsity.
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Applications on Tencent

Table 10: Efficiency and accuracy comparison on the Tencent video classification.

| SGC $2GC GBP SIGN GAMLP(R) GAMLP (JK) GCN APPNP AP-GCN JK-Net ResGCN GAT

1.0 1.2 1.3 3.2 6.1 7.4 33.1 77.8 112.3 112.8 132.3 372.4
45.2+0.3 46.6+£0.6 46.9+0.7 46.3+£0.5 47.8+0.4 48.1+0.6 45.9+04 46.7£0.6 46.9+0.7 47.2+0.3 45.8+0.5 46.8+0.7

Training Time
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Figure 4: An overview of GAMLP deployed in Tencent.
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Summary

« SGC

— Remove the linearity (scale to large datasets)
— Low-pass filtering analysis

« SIGN

— Combine filters of different types and sizes

« SAGN + GAMLP

— Learnable attention weights between multiple hops
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Homework 4: SIGN Implementation

« Experiments on SIGN:
— Due by 7t Aug.
— Implement SIGN model based on CogDL
— Test SIGN model on the cora dataset
— Give the analysis of the results

 Find the homework material from the course website:
https://cogdl.ai/gnn2022/

« Bonus: summarize these simplified GNNs on:
https://discuss.cogdl.ai/t/topic/67.
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Thank you'!

Collaborators:

Zhenyu Hou, Yuxiao Dong, Jie Tang, et al. (THU)
Qingfei Zhao, Xinije Zhang, Peng Zhang, et al. (Zhipu Al)
Hongxiao Yang, Chang Zhou, et al. (Alibaba)

Yang Yang (ZJU)

Yukuo Cen, KEG, Tsinghua U. https://github.com/THUDM/coqgd|
Online Discussion Forum https://discuss.cogdl.ai/
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