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Review Representation Learning for Graphs
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Users with the same label are located in 
the d-dimensional space closer than those 
with different labels
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Graph Embedding
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Questions

• What are the fundamentals underlying the 
different methods?

or
• Can we unify the different network embedding 

approaches?
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Unifying DeepWalk, LINE, PTE, and 
node2vec into Matrix Forms

1. Qiu et al. Network embedding as matrix factorization: unifying deepwalk, line, pte, and node2vec. WSDM’18. The most cited paper in WSDM’18 as of May 2019
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Starting with DeepWalk
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DeepWalk Algorithm
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Skip-gram with Negative Sampling

1. Levy and Goldberg. Neural word embeddings as implicit matrix factorization. In NIPS 2014

• SGNS maintains a multiset 𝓓 that counts the occurrence of 
each word-context pair (𝑤, 𝑐)

• Objective

ℒ =)
!

)
"

(# 𝑤, 𝑐 log 𝑔 𝑥!#𝑥" +
𝑏# 𝑤 #(𝑐)

|𝒟|
log 𝑔(−𝑥!#𝑥"))

where xw and xc are d-dimenational vector
• For sufficiently large dimension d, the objective above is 

equivalent to factorizing the PMI matrix[1]

log
#(𝑤, 𝑐)|𝒟|
𝑏#(𝑤)#(𝑐)
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PMI Matrix of Random Walks on a Graph

𝑙𝑜𝑔
#(𝑤, 𝑐)|𝒟|
𝑏#(𝑤)#(𝑐)

Levy&Goldberg (NIPS’14)

?
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Understanding random walk + skip gram
• Partition the multiset 𝒟 into several sub-multisets according to the 

way in which each node and its context appear in a random walk 
node sequence. More formally, for 𝑟 = 1, 2,⋯ , 𝑇, we define 
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Understanding random walk + skip gram
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Understanding random walk + skip gram

the length of random walk 𝐿 → ∞

1. Qiu et al. Network embedding as matrix factorization: unifying deepwalk, line, pte, and node2vec. WSDM’18. The most cited paper in WSDM’18 as of May 2019
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Understanding random walk + skip gram

• Write it in matrix form:
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𝑤!

𝑤!"#
𝑤!"$

𝑤!%$
𝑤!%#

DeepWalk is asymptotically and implicitly factorizing 

DeepWalk is factorizing a matrix

𝑣𝑜𝑙 𝐺 =&
!

&
"

𝐴!"

𝑨 Adjacency matrix
𝑫 Degree matrix

b: #negative samples
T: context window size
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LINE



15

PTE
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node2vec — 2nd Order Random Walk
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Unifying DeepWalk, LINE, PTE, and 
node2vec into Matrix Forms

1. Qiu et al. Network embedding as matrix factorization: unifying deepwalk, line, pte, and node2vec. WSDM’18. The most cited paper in WSDM’18 as of May 2019
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NetMF: explicitly factorizing the DW matrix

𝑤!

𝑤!"#
𝑤!"$

𝑤!%$
𝑤!%#

A unified algorithm NetMF to explicitly factorizes the derived matrix

Matrix 
Factorization

1. Qiu et al. Network embedding as matrix factorization: unifying deepwalk, line, pte, and node2vec. WSDM’18. The most cited paper in WSDM’18 as of May 2019
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Explicitly factorize the matrix

1. R. Lehoucq, D. Sorensen, and C.Yang. 1998. ARPACK users’ guide: solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods. SIAM.

• approximate D-1/2AD-1/2
with its top-h eigenpairs 
Uh𝝠hUhT

• decompose using Arnoldi
algorithm[1]
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Experimental Setup

** Code available at https://github.com/xptree/NetMF

https://github.com/xptree/NetMF
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Results
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Challenge in NetMF

Academic graphSmall world
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Sparsify 𝑺

For random-walk matrix polynomial

where                        and      non-negative

One can construct a 1 + 𝜖 -spectral sparsifier +𝑳 with                        non-zeros 

in time 
for undirected graphs

1. D. Cheng, Y. Cheng, Y. Liu, R. Peng, and S.H. Teng, Efficient Sampling for Gaussian Graphical Models via Spectral Sparsification, COLT 2015.
2. D. Cheng, Y. Cheng, Y. Liu, R. Peng, and S.H. Teng. Spectral sparsification of random-walk matrix polynomials. arXiv:1502.03496.



24

Sparsify 𝑺

For random-walk matrix polynomial

where                        and      non-negative

One can construct a 1 + 𝜖 -spectral sparsifier +𝑳 with                        non-zeros 

in time 
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NetSMF --- Sparse

Factorize the constructed matrix

1. J. Qiu, Y. Dong, H. Ma, J. Li, C. Wang, K. Wang, and J. Tang. NetSMF: Large-Scale Network Embedding as Sparse Matrix Factorization. WWW’19.
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NetSMF — Approximation Error
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Datasets

** Code available at https://github.com/xptree/NetSMF

https://github.com/xptree/NetSMF
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Results

** Code available at https://github.com/xptree/NetSMF

https://github.com/xptree/NetSMF
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ProNE: Fast and Scalable Network Embedding

1. J. Zhang, Y. Dong, Y. Wang, J. Tang, and M. Ding. ProNE: Fast and Scalable Network Representation Learning. IJCAI’19.
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NE as Sparse Matrix Factorization

• node-context set (sparsity)

• Probability of context 𝑣! given node 𝑣"

• Objective:                                                   ,

• Modify the loss (sum over the edge-->sparse)

• Local negative samples drawn from
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NE as Sparse Matrix Factorization

• Let the partial derivative w.r.t. be zero

• Matrix to be factorized (sparse)
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NE as Sparse Matrix Factorization

• Compared with matrix factorization method (e.g., NetMF)

• Sparsity (local structure and local negative samples)à
much faster and scalable (e.g., randomized tSVD, O(|E|))

• The optimization (single thread) is much faster than SGD
used in DeepWalk, LINE, etc. and is still scalable!!!

• Challenge: may lose high order information!

• Improvement via spectral propagation

V.S.
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Higher-order Cheeger’s inequality

•

• Bridge graph spectrum and graph partitioning

• k-way Cheeger constant : reflects the effect of the
graph partitioned into k parts. A smaller value of
means a better partitioning effect.

1. J. R. Lee, S. O. Gharan, L. Trevisan. Multiway spectral partitioning and higher-order cheeger inequalities. Journal of the ACM (JACM), 2014, 61(6): 37.
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Spectral Propagation of ProNE

• Spectral propagation only involves sparse matrix
multiplication! The complexity is linear!

• where 

• To avoid explicit eigendecomposition, use Chebyshev 
expansion:

• sparse matrix factorization + spectral propagation
= O(|V|d2 + k|E|)
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Results

** Code available at https://github.com/THUDM/ProNE

* ProNE (1 thread) v.s. 
Others (20 threads)

* 10 minutes on 
Youtube (~1M nodes)

https://github.com/THUDM/ProNE
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Effectiveness experiments

** Code available at https://github.com/THUDM/ProNE

* ProNE (SMF) = ProNE w/ 
only sparse matrix factorization

Embed 100,000,000 nodes by one thread: 
29 hours with performance superiority

https://github.com/THUDM/ProNE
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Spectral Propagation for Enhancement
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Net(S)MF vs. ProNE

• NetMF is slow depending on the density of the 
matrix; 

• NetSMF needs to approximate high-order 
random-walk matrix polynomials

• ProNE=sparse MF + spectral propagation is 
much faster

• Is that possible? Net(S)MF + ProNE?

V.S.
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LightNE (SIGMOD’21)

• Scalable: Embed graphs with 1B edges within 1.5 hours.
• Lightweight: Occupy hardware costs below 100 dollars 

measured by cloud rent to process 1B to 100B edges.
• Accurate: Achieve the highest accuracy in downstream tasks 

under the same time budget and similar resources.

1. J. Qiu, L. Dhulipala, J. Tang, R. Peng, and C. Wang. Lightne: A lightweight graph processing system for network embedding. SIGMOD'21.
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LightNE on Very Large Graphs

• None of the existing network embedding systems can 
handle such large graphs in a single machine!

** Code available at https://github.com/xptree/LightNE

https://github.com/xptree/LightNE
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Input: 
Adjacency 

Matrix
𝑨

Output: 

Vector
𝒁

Representation Learning on Networks

NetMF RLN by Matrix

ProNE 𝒁 = 𝑓(𝒁′)

Scalable RLN NetSMF

offer 10-400X speedups 

handle 100M graph

achieve better accuracy

1. Qiu et al. Network embedding as matrix factorization: unifying deepwalk, line, pte, and node2vec. WSDM’18. The most cited paper in WSDM’18 as of May 2019
2. J. Qiu, Y. Dong, H. Ma, J. Li, C. Wang, K. Wang, and J. Tang. NetSMF: Large-Scale Network Embedding as Sparse Matrix Factorization. WWW’19.
3. J. Zhang, Y. Dong, Y. Wang, J. Tang, and M. Ding. ProNE: Fast and Scalable Network Representation Learning. IJCAI’19.
4. J. Qiu, L. Dhulipala, J. Tang, R. Peng, and C. Wang. Lightne: A lightweight graph processing system for network embedding. SIGMOD'21.

𝑺 = 𝑓(𝑨)

Sparsify 𝑺

Fast RLN

LightNE Emb System
handle 100B graph

Lightweight
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Homework 2

• Experiments on different network embedding methods
– Due by 24th July
– Compare the performance of four methods (including 

DeepWalk, NetMF, NetSMF, ProNE)
– Directly import the models from CogDL (but read the 

implementations in CogDL if possible)
– Carefully select the hyper-parameter setting for methods
– Visualize the experimental results
– Give the analysis of the results

• Find the homework material from the course website: 
https://cogdl.ai/gnn2022/

https://cogdl.ai/gnn2022/
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Yukuo Cen, KEG, Tsinghua U.                https://github.com/THUDM/cogdl
Online Discussion Forum https://discuss.cogdl.ai/

Thank you！
Collaborators:

Zhenyu Hou, Yuxiao Dong, Jie Tang et al. (THU)
Qingfei Zhao, Xinije Zhang, Peng Zhang (Zhipu AI)

Hongxiao Yang, Chang Zhou, et al. (Alibaba)
Yang Yang (ZJU)

https://github.com/THUDM/cogdl
https://discuss.cogdl.ai/

