

Advanced Network Embedding

Yukuo Cen

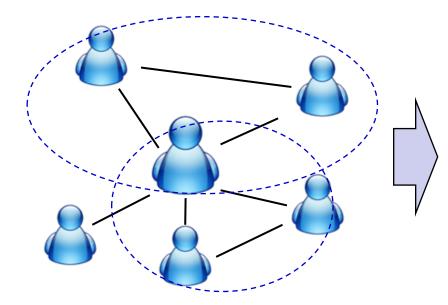
GNN Center, Zhipu Al KEG, Tsinghua University Advisors: Yuxiao Dong, Jie Tang

Course Link: <u>https://cogdl.ai/gnn2022/</u>

CogDL is publicly available at https://github.com/THUDM/cogdl

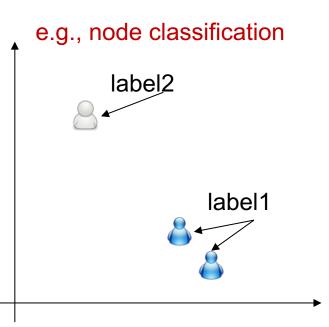
Review Representation Learning for Graphs

Representation Learning/ Graph Embedding



d-dimensional vector, *d*<<|*V*|

Users with the same label are located in the *d*-dimensional space closer than those with different labels



Questions

• What are the fundamentals underlying the different methods?

or

Can we unify the different network embedding approaches?

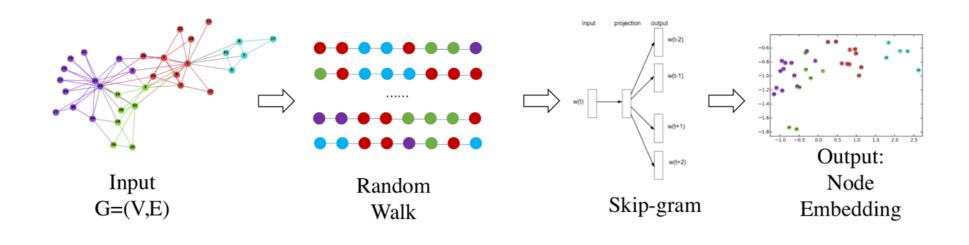
Unifying DeepWalk, LINE, PTE, and node2vec into Matrix Forms

Algorithm	Closed Matrix Form				
DeepWalk	$\log\left(\operatorname{vol}(G)\left(\frac{1}{T}\sum_{r=1}^{T}(D^{-1}A)^{r}\right)D^{-1}\right) - \log b$				
LINE	$\log\left(\operatorname{vol}(G)\boldsymbol{D}^{-1}\boldsymbol{A}\boldsymbol{D}^{-1}\right) - \log \boldsymbol{b}$				
PTE	$\log \left(\begin{bmatrix} \alpha \operatorname{vol}(G_{ww})(\boldsymbol{D}_{row}^{ww})^{-1}\boldsymbol{A}_{ww}(\boldsymbol{D}_{col}^{ww})^{-1} \\ \beta \operatorname{vol}(G_{dw})(\boldsymbol{D}_{row}^{dw})^{-1}\boldsymbol{A}_{dw}(\boldsymbol{D}_{col}^{dw})^{-1} \\ \gamma \operatorname{vol}(G_{lw})(\boldsymbol{D}_{row}^{lw})^{-1}\boldsymbol{A}_{lw}(\boldsymbol{D}_{col}^{lw})^{-1} \end{bmatrix} \right) - \log b$				
node2vec	$\log\left(\frac{\frac{1}{2T}\sum_{r=1}^{T}\left(\sum_{u}X_{w,u}\underline{P}_{c,w,u}^{r}+\sum_{u}X_{c,u}\underline{P}_{w,c,u}^{r}\right)}{(\sum_{u}X_{w,u})(\sum_{u}X_{c,u})}\right)-\log b$				

 $A: A \in \mathbb{R}_{+}^{|V| \times |V|} \text{ is } G \text{'s adjacency matrix with } A_{i, j} \text{ as the edge weight between vertices } i \text{ and } j;$ $D_{\text{col}}: D_{\text{col}} = \text{diag}(A^{\top} e) \text{ is the diagonal matrix with column sum of } A;$ $D_{\text{row}}: D_{\text{row}} = \text{diag}(Ae) \text{ is the diagonal matrix with row sum of } A;$ $D: \text{ For undirected graphs } (A^{\top} = A), D_{\text{col}} = D_{\text{row}}. \text{ For brevity, } D \text{ represents both } D_{\text{col}} \& D_{\text{row}}.$ $D = \text{diag}(d_1, \dots, d_{|V|}), \text{ where } d_i \text{ represents generalized degree of vertex } i;$ $\text{vol}(G): \text{vol}(G) = \sum_i \sum_j A_{i,j} = \sum_i d_i \text{ is the volume of an weighted graph } G;$ T & b: The context window size and the number of negative sampling in skip-gram, respectively.

1. Qiu et al. Network embedding as matrix factorization: unifying deepwalk, line, pte, and node2vec. WSDM'18. The most cited paper in WSDM'18 as of May 2019 4

Starting with DeepWalk



DeepWalk Algorithm

Algorithm 1: DeepWalk

1 for n = 1, 2, ..., N do 2 Pick w_1^n according to a probability distribution $P(w_1)$; 3 Generate a vertex sequence (w_1^n, \cdots, w_L^n) of length L by a random walk on network G; 4 for j = 1, 2, ..., L - T do 5 for r = 1, ..., T do 6 Add vertex-context pair (w_j^n, w_{j+r}^n) to multiset \mathcal{D} ; 7 Calculate the second set \mathcal{D} ;

8 Run SGNS on \mathcal{D} with b negative samples.

Skip-gram with Negative Sampling

- SGNS maintains a multiset D that counts the occurrence of each word-context pair (w, c)
- Objective

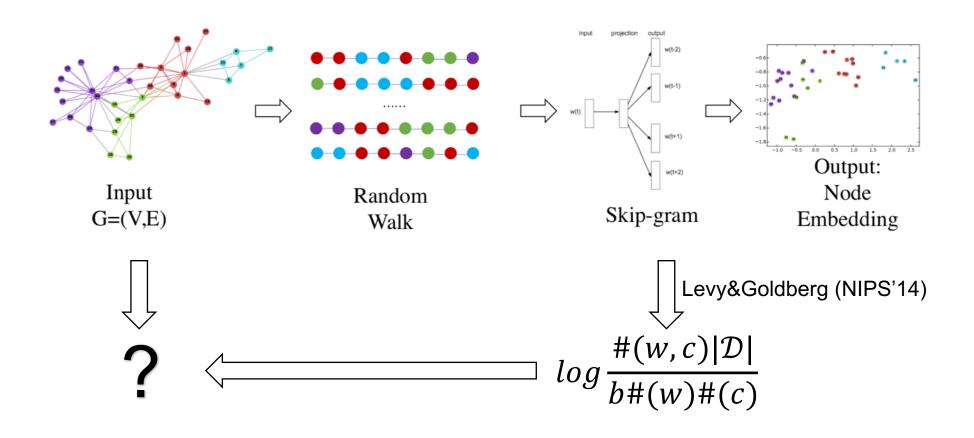
$$\mathcal{L} = \sum_{w} \sum_{c} (\#(w, c) \log g(x_{w}^{T} x_{c}) + \frac{b\#(w)\#(c)}{|\mathcal{D}|} \log g(-x_{w}^{T} x_{c}))$$

where x_w and x_c are *d*-dimensional vector

 For sufficiently large dimension *d*, the objective above is equivalent to factorizing the PMI matrix^[1]

$$\log \frac{\#(w,c)|\mathcal{D}|}{b\#(w)\#(c)}$$

PMI Matrix of Random Walks on a Graph



• Partition the multiset \mathcal{D} into several sub-multisets according to the way in which each node and its context appear in a random walk node sequence. More formally, for $r = 1, 2, \dots, T$, we define

$$\mathcal{D}_{\overrightarrow{r}} = \left\{ (w,c) : (w,c) \in \mathcal{D}, w = w_j^n, c = w_{j+r}^n \right\}$$
$$\mathcal{D}_{\overleftarrow{r}} = \left\{ (w,c) : (w,c) \in \mathcal{D}, w = w_{j+r}^n, c = w_j^n \right\}$$
$$(c, a) \quad \mathcal{D}_{\overrightarrow{1}}$$
$$(c, a) \quad \mathcal{D}_{\overrightarrow{1}}$$
$$(c, a) \quad \mathcal{D}_{\overrightarrow{2}}$$
$$(c, e) \quad \mathcal{D}_{\overrightarrow{2}}$$

THEOREM 2.1. Denote $P = D^{-1}A$, when $L \to \infty$, we have

$$\frac{\#(w, c)_{\overrightarrow{r}}}{\left|\mathcal{D}_{\overrightarrow{r}}\right|} \xrightarrow{p} \frac{d_{w}}{\operatorname{vol}(G)} (P^{r})_{w, c} \text{ and } \frac{\#(w, c)_{\overleftarrow{r}}}{\left|\mathcal{D}_{\overleftarrow{r}}\right|} \xrightarrow{p} \frac{d_{c}}{\operatorname{vol}(G)} (P^{r})_{c, w}$$

THEOREM 2.2. When $L \rightarrow \infty$, we have

$$\frac{\#(w,c)}{|\mathcal{D}|} \xrightarrow{p} \frac{1}{2T} \sum_{r=1}^{T} \left(\frac{d_w}{\operatorname{vol}(G)} \, (P^r)_{w,c} + \frac{d_c}{\operatorname{vol}(G)} \, (P^r)_{c,w} \right)$$

$$\log\left(\frac{\#(w,c)\,|\mathcal{D}|}{b\#(w)\,\cdot\,\#(c)}\right) = \log\left(\frac{\frac{\#(w,c)}{|\mathcal{D}|}}{b\frac{\#(w)}{|\mathcal{D}|}\frac{\#(c)}{|\mathcal{D}|}}\right)$$

$$\log\left(\frac{\#(w,c) |\mathcal{D}|}{b\#(w) \cdot \#(c)}\right) = \log\left(\frac{\frac{\#(w,c)}{|\mathcal{D}|}}{b\frac{\#(w)}{|\mathcal{D}|} \frac{\#(c)}{|\mathcal{D}|}}\right) \qquad \text{the length of random walk } L \to \infty$$

$$\frac{\#(w,c) |\mathcal{D}|}{|\mathcal{D}|} \xrightarrow{p} \frac{1}{2T} \sum_{r=1}^{T} \left(\frac{d_w}{\operatorname{vol}(G)} (P^r)_{w,c} + \frac{d_c}{\operatorname{vol}(G)} (P^r)_{c,w}\right) \qquad P = D^{-1}A$$

$$\frac{\#(w,c) |\mathcal{D}|}{|\mathcal{D}|} \xrightarrow{\frac{\#(w,c)}{|\mathcal{D}|}} \xrightarrow{p} \frac{1}{2T} \sum_{r=1}^{T} \left(\frac{d_w}{\operatorname{vol}(G)} (P^r)_{w,c} + \frac{d_c}{\operatorname{vol}(G)} (P^r)_{c,w}\right)$$

$$\frac{\#(w,c) |\mathcal{D}|}{\#(w) \cdot \#(c)} = \frac{\#(w,c)}{|\mathcal{D}|} \xrightarrow{p} \frac{1}{2T} \sum_{r=1}^{T} \left(\frac{d_w}{\operatorname{vol}(G)} (P^r)_{w,c} + \frac{d_c}{\operatorname{vol}(G)} (P^r)_{c,w}\right)$$

$$\frac{\#(w,c) |\mathcal{D}|}{\#(w) \cdot \#(c)} = \frac{\#(w,c)}{|\mathcal{D}|} \xrightarrow{p} \frac{1}{2T} \sum_{r=1}^{T} \left(\frac{d_w}{\operatorname{vol}(G)} (P^r)_{w,c} + \frac{d_c}{\operatorname{vol}(G)} (P^r)_{c,w}\right)$$

$$\frac{\psi(w,c) |\mathcal{D}|}{\#(w) \cdot \#(c)} = \frac{\psi(w,c)}{|\mathcal{D}|} \xrightarrow{p} \frac{1}{2T} \sum_{r=1}^{T} \left(\frac{d_w}{\operatorname{vol}(G)} (P^r)_{w,c} + \frac{d_c}{\operatorname{vol}(G)} (P^r)_{c,w}\right)$$

1. Qiu et al. Network embedding as matrix factorization: unifying deepwalk, line, pte, and node2vec. WSDM'18. The most cited paper in WSDM'18 as of May 2019 11

• Write it in matrix form:

#(#(1

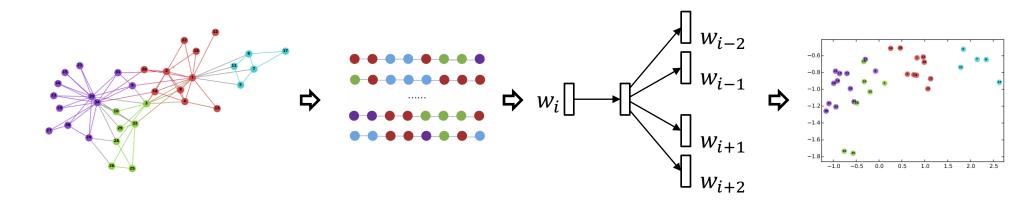
$$\frac{w,c) |\mathcal{D}|}{v) \cdot \#(c)} \xrightarrow{p} \frac{\operatorname{vol}(G)}{2T} \left(\frac{1}{d_c} \sum_{r=1}^T (P^r)_{w,c} + \frac{1}{d_w} \sum_{r=1}^T (P^r)_{c,w} \right)$$

$$= \frac{\operatorname{vol}(G)}{2T} \left(\sum_{r=1}^T P^r D^{-1} + \sum_{r=1}^T D^{-1} (P^r)^\top \right)$$

$$= \frac{\operatorname{vol}(G)}{2T} \left(\sum_{r=1}^T \underbrace{D^{-1}A \times \cdots \times D^{-1}A}_{r \text{ terms}} D^{-1} + \sum_{r=1}^T D^{-1} \underbrace{AD^{-1} \times \cdots \times AD^{-1}}_{r \text{ terms}} \right)$$

$$= \frac{\operatorname{vol}(G)}{T} \sum_{r=1}^T \underbrace{D^{-1}A \times \cdots \times D^{-1}A}_{r \text{ terms}} D^{-1} = \operatorname{vol}(G) \left(\frac{1}{T} \sum_{r=1}^T P^r \right) D^{-1}.$$

DeepWalk is factorizing a matrix



DeepWalk is asymptotically and implicitly factorizing

$$\log\left(\frac{\operatorname{vol}(G)}{b}\left(\frac{1}{T}\sum_{r=1}^{T}\left(\boldsymbol{D}^{-1}\boldsymbol{A}\right)^{r}\right)\boldsymbol{D}^{-1}\right) \quad \operatorname{vol}(G) = \sum_{i}\sum_{j}A_{ij}$$

A Adjacency matrix

b: #negative samples

D Degree matrix

T: context window size

LINE

Objective of LINE:

$$\mathcal{L} = \sum_{i=1}^{|V|} \sum_{j=1}^{|V|} \left(\boldsymbol{A}_{i,j} \log g \left(\boldsymbol{x}_i^{\top} \boldsymbol{y}_j \right) + \frac{b d_i d_j}{\operatorname{vol}(G)} \log g \left(- \boldsymbol{x}_i^{\top} \boldsymbol{y}_j \right) \right).$$

Align it with the Objective of SGNS:

$$\mathcal{L} = \sum_{w} \sum_{c} \left(\#(w,c) \log g \left(\boldsymbol{x}_{w}^{\top} \boldsymbol{y}_{c} \right) + \frac{b \#(w) \#(c)}{|\mathcal{D}|} \log g \left(-\boldsymbol{x}_{w}^{\top} \boldsymbol{y}_{c} \right) \right).$$

LINE is actually factorizing

()

$$\log\left(\frac{\operatorname{vol}(G)}{b}\boldsymbol{D}^{-1}\boldsymbol{A}\boldsymbol{D}^{-1}\right)$$

Recall DeepWalk's matrix form:

$$\log \left(\frac{\operatorname{vol}(G)}{b} \left(\frac{1}{T} \sum_{r=1}^{T} \left(\boldsymbol{D}^{-1} \boldsymbol{A} \right)^{r} \right) \boldsymbol{D}^{-1} \right).$$

bservation LINE is a special case of DeepWalk ($T = 1$).

PTE

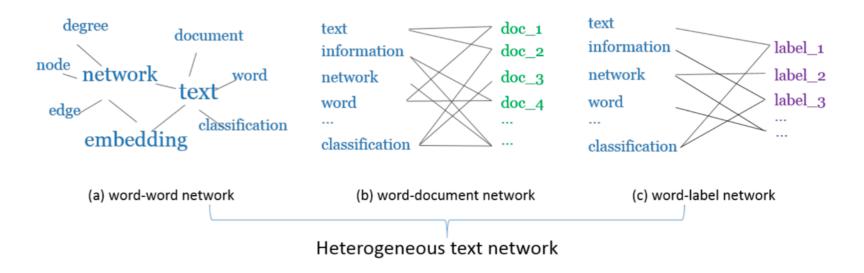


Figure 2: Heterogeneous Text Network.

$$\log \left(\begin{bmatrix} \alpha \operatorname{vol}(G_{\mathsf{ww}})(\boldsymbol{D}_{\mathsf{row}}^{\mathsf{ww}})^{-1} \boldsymbol{A}_{\mathsf{ww}}(\boldsymbol{D}_{\mathsf{col}}^{\mathsf{ww}})^{-1} \\ \beta \operatorname{vol}(G_{\mathsf{dw}})(\boldsymbol{D}_{\mathsf{row}}^{\mathsf{dw}})^{-1} \boldsymbol{A}_{\mathsf{dw}}(\boldsymbol{D}_{\mathsf{col}}^{\mathsf{dw}})^{-1} \\ \gamma \operatorname{vol}(G_{\mathsf{lw}})(\boldsymbol{D}_{\mathsf{row}}^{\mathsf{lw}})^{-1} \boldsymbol{A}_{\mathsf{lw}}(\boldsymbol{D}_{\mathsf{col}}^{\mathsf{lw}})^{-1} \end{bmatrix} \right) - \log b,$$

node2vec — 2nd Order Random Walk

$$\underline{T}_{u,v,w} = \begin{cases} \frac{1}{p} & (u,v) \in E, (v,w) \in E, u = w; \\ 1 & (u,v) \in E, (v,w) \in E, u \neq w, (w,u) \in E; \\ \frac{1}{q} & (u,v) \in E, (v,w) \in E, u \neq w, (w,u) \notin E; \\ 0 & \text{otherwise.} \end{cases}$$

$$\underline{\boldsymbol{P}}_{u,v,w} = \operatorname{Prob}\left(w_{j+1} = u | w_j = v, w_{j-1} = w\right) = \frac{\underline{\boldsymbol{T}}_{u,v,w}}{\sum_u \underline{\boldsymbol{T}}_{u,v,w}}$$

Stationary Distribution

$$\sum_{w} \underline{P}_{u,v,w} X_{v,w} = X_{u,v}$$

Existence guaranteed by Perron-Frobenius theorem, but may not be unique.

$$\frac{\#(w,c)|\mathcal{D}|}{\#(w)\cdot\#(c)} \xrightarrow{P} \frac{\frac{1}{2T}\sum_{r=1}^{T} \left(\sum_{u} X_{w,u} \underline{P}_{c,w,u}^{r} + \sum_{u} X_{c,u} \underline{P}_{w,c,u}^{r}\right)}{\left(\sum_{u} X_{w,u}\right) \left(\sum_{u} X_{c,u}\right)}$$

Unifying DeepWalk, LINE, PTE, and node2vec into Matrix Forms

Algorithm	Closed Matrix Form					
DeepWalk	$\log\left(\operatorname{vol}(G)\left(\frac{1}{T}\sum_{r=1}^{T}(D^{-1}A)^{r}\right)D^{-1}\right) - \log b$					
LINE	$\log\left(\operatorname{vol}(G)\boldsymbol{D}^{-1}\boldsymbol{A}\boldsymbol{D}^{-1}\right) - \log \boldsymbol{b}$					
PTE	$\log \left(\begin{bmatrix} \alpha \operatorname{vol}(G_{ww})(\boldsymbol{D}_{row}^{ww})^{-1}\boldsymbol{A}_{ww}(\boldsymbol{D}_{col}^{ww})^{-1} \\ \beta \operatorname{vol}(G_{dw})(\boldsymbol{D}_{row}^{dw})^{-1}\boldsymbol{A}_{dw}(\boldsymbol{D}_{col}^{dw})^{-1} \\ \gamma \operatorname{vol}(G_{lw})(\boldsymbol{D}_{row}^{lw})^{-1}\boldsymbol{A}_{lw}(\boldsymbol{D}_{col}^{lw})^{-1} \end{bmatrix} \right) - \log b$					
node2vec	$\log\left(\frac{\frac{1}{2T}\sum_{r=1}^{T}\left(\sum_{u}X_{w,u}\underline{P}_{c,w,u}^{r}+\sum_{u}X_{c,u}\underline{P}_{w,c,u}^{r}\right)}{(\sum_{u}X_{w,u})(\sum_{u}X_{c,u})}\right)-\log b$					

1. Qiu et al. Network embedding as matrix factorization: unifying deepwalk, line, pte, and node2vec. WSDM'18. The most cited paper in WSDM'18 as of May 2019 17

NetMF: explicitly factorizing the DW matrix

A unified algorithm **NetMF** to explicitly factorizes the derived matrix

$$\log\left(\frac{\operatorname{vol}(G)}{b}\left(\frac{1}{T}\sum_{r=1}^{T}\left(\boldsymbol{D}^{-1}\boldsymbol{A}\right)^{r}\right)\boldsymbol{D}^{-1}\right)$$

1. Qiu et al. Network embedding as matrix factorization: unifying deepwalk, line, pte, and node2vec. WSDM'18. The most cited paper in WSDM'18 as of May 2019 18

Explicitly factorize the matrix

Algorithm 3: NetMF for a Small Window Size T

- 1 Compute P^1, \cdots, P^T ;
- ² Compute $M = \frac{\operatorname{vol}(G)}{bT} \left(\sum_{r=1}^{T} P^{r} \right) D^{-1};$
- ³ Compute $M' = \max(M, 1)$;
- 4 Rank-*d* approximation by SVD: $\log M' = U_d \Sigma_d V_d^{\top}$;

5 **return** $U_d \sqrt{\Sigma_d}$ as network embedding.

Algorithm 4: NetMF for a Large Window Size *T*

- 1 Eigen-decomposition $D^{-1/2}AD^{-1/2} \approx U_h \Lambda_h U_h^{\top}$; approximate $D^{-1/2}AD^{-1/2}$
- ² Approximate M with

$$\hat{\boldsymbol{M}} = \frac{\operatorname{vol}(G)}{b} \boldsymbol{D}^{-1/2} \boldsymbol{U}_h \left(\frac{1}{T} \sum_{r=1}^T \boldsymbol{\Lambda}_h^r \right) \boldsymbol{U}_h^{\top} \boldsymbol{D}^{-1/2};$$

- 3 Compute $\hat{M}' = \max(\hat{M}, 1);$
- ⁴ Rank-*d* approximation by SVD: $\log \hat{M}' = U_d \Sigma_d V_d^{\top}$;
- 5 **return** $U_d \sqrt{\Sigma_d}$ as network embedding.

- approximate $D^{-1/2}AD^{-1/2}$ with its top-*h* eigenpairs $U_h \Lambda_h U_h^T$
- decompose using Arnoldi algorithm^[1]

Experimental Setup

Label Classification:

- BlogCatelog, PPI, Wikipedia, Flickr
- Logistic Regression
- ▶ NetMF (T = 1) v.s. LINE
- ▶ NetMF (T = 10) v.s. DeepWalk

Table 1: Statistics of Datasets.

Dataset	BlogCatalog	PPI	Wikipedia	Flickr
V	10,312	3,890	4,777	80,513
E	333,983	76,584	184,812	5,899,882
#Labels	39	50	40	195

** Code available at https://github.com/xptree/NetMF

Results

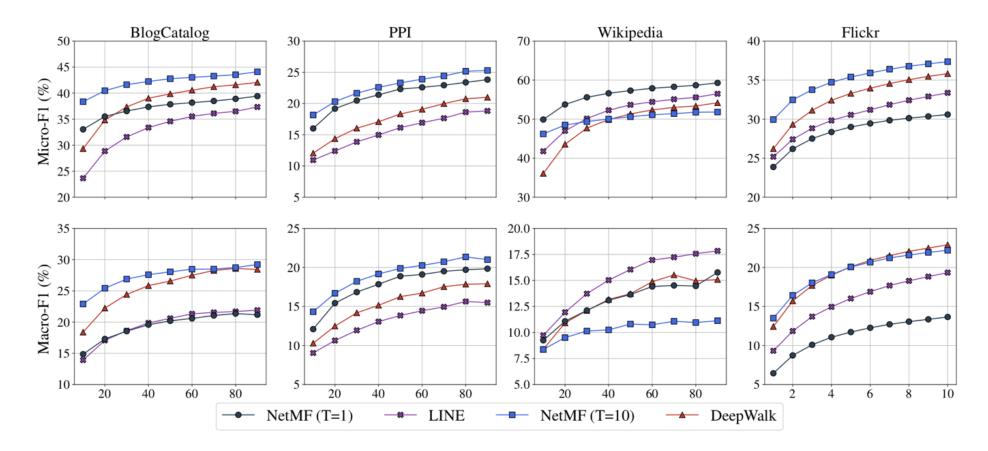
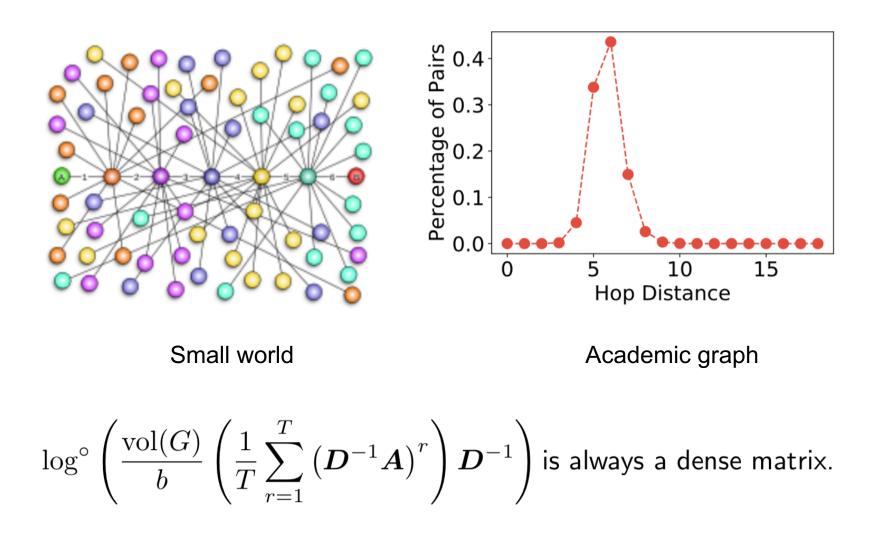


Figure 5: Predictive performance on varying the ratio of training data. The x-axis represents the ratio of labeled data (%), and the y-axis in the top and bottom rows denote the Micro-F1 and Macro-F1 scores respectively.

Challenge in NetMF



Sparsify S

For random-walk matrix polynomial $\boldsymbol{L} = \boldsymbol{D} - \sum_{r=1}^{T} \alpha_r \boldsymbol{D} \left(\boldsymbol{D}^{-1} \boldsymbol{A} \right)^r$

where $\sum_{r=1}^{T} \alpha_r = 1$ and α_r non-negative

One can construct a $(1 + \epsilon)$ -spectral sparsifier \tilde{L} with $O(n \log n \epsilon^{-2})$ non-zeros

in time $O(T^2 m \epsilon^{-2} \log^2 n)$ $O(T^2 m \epsilon^{-2} \log n)$ for undirected graphs

Sparsify S

For random-walk matrix polynomial $\boldsymbol{L} = \boldsymbol{D} - \sum_{r=1}^{T} \alpha_r \boldsymbol{D} \left(\boldsymbol{D}^{-1} \boldsymbol{A} \right)^r$

where $\sum_{r=1}^{T} \alpha_r = 1$ and α_r non-negative

One can construct a $(1 + \epsilon)$ -spectral sparsifier \tilde{L} with $O(n \log n \epsilon^{-2})$ non-zeros

in time
$$O(T^2m\epsilon^{-2}\log^2 n)$$

Suppose G = (V, E, A) and $\widetilde{G} = (V, \widetilde{E}, \widetilde{A})$ are two weighted undirected networks. Let $L = D_G - A$ and $\widetilde{L} = D_{\widetilde{G}} - \widetilde{A}$ be their Laplacian matrices, respectively. We define G and \widetilde{G} are $(1 + \epsilon)$ -spectrally similar if $\forall x \in \mathbb{R}^n, (1 - \epsilon) \cdot x^\top \widetilde{L} x \leq x^\top L x \leq (1 + \epsilon) \cdot x^\top \widetilde{L} x.$

NetSMF --- Sparse

- Construct a random walk matrix polynomial sparsifier, \widetilde{L}
- Construct a NetMF matrix sparsifier.

trunc_log°
$$\left(\frac{\operatorname{vol}(G)}{b}\boldsymbol{D}^{-1}(\boldsymbol{D}-\widetilde{\boldsymbol{L}})\boldsymbol{D}^{-1}\right)$$

Factorize the constructed matrix

NetSMF — Approximation Error

Denote
$$M = D^{-1} (D - L) D^{-1}$$
 in
trunc_log[°] $\left(\frac{\operatorname{vol}(G)}{b} D^{-1} (D - \widetilde{L}) D^{-1} \right)$,

and \widetilde{M} to be its sparsifier the we constructed.

Theorem The singular value of $\widetilde{M} - M$ satisfies

$$\sigma_i(\widetilde{\boldsymbol{M}} - \boldsymbol{M}) \le \frac{4\epsilon}{\sqrt{d_i d_{\min}}}, \forall i \in [n].$$

Theorem Let $\|\cdot\|_F$ be the matrix Frobenius norm. Then

$$\left\|\operatorname{trunc_log}^{\circ}\left(\frac{\operatorname{vol}(G)}{b}\widetilde{M}\right) - \operatorname{trunc_log}^{\circ}\left(\frac{\operatorname{vol}(G)}{b}M\right)\right\|_{F} \leq \frac{4\epsilon \operatorname{vol}(G)}{b\sqrt{d_{\min}}}\sqrt{\sum_{i=1}^{n} \frac{1}{d_{i}}}.$$

Datasets

Dataset	BlogCatalog	PPI	Flickr	YouTube	OAG
V	10,312	3,890	80,513	1,138,499	67,768,244
E	333,983	76,584	5,899,882	2,990,443	895,368,962
#labels	39	50	195	47	19

** Code available at https://github.com/xptree/NetSMF

Results

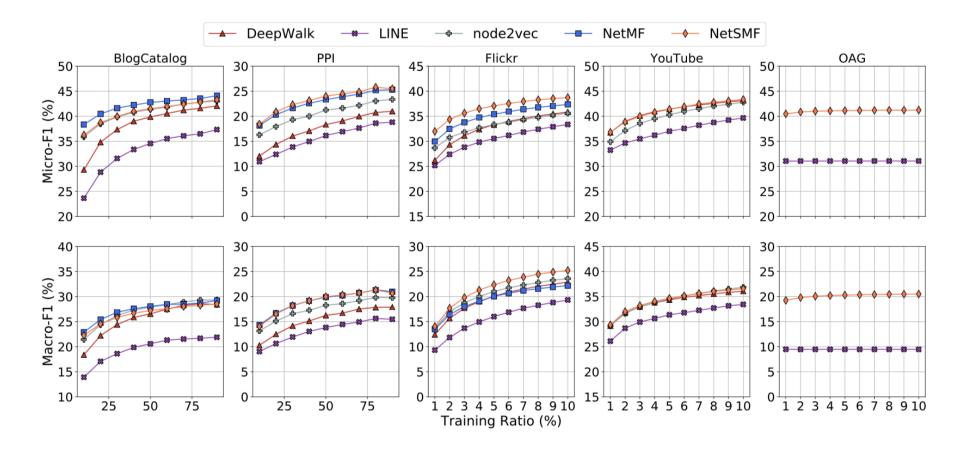
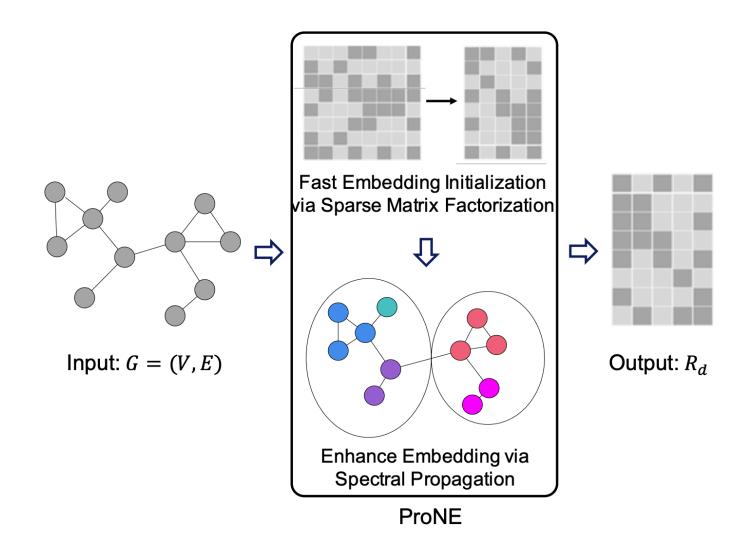


Figure 7: Predictive performance on varying the ratio of training data. The x-axis represents the ratio of labeled data (%), and the y-axis in the top and bottom rows denote the Micro-F1 and Macro-F1 scores

** Code available at https://github.com/xptree/NetSMF

ProNE: Fast and Scalable Network Embedding



NE as Sparse Matrix Factorization

- node-context set $\mathcal{D} = E$ (sparsity)
- Probability of context v_j given node v_i $\hat{p}_{i,j} = \sigma(r_i^T c_j)$
- Objective: $l = -\sum_{(i,j)\in\mathcal{D}} p_{i,j} \ln \hat{p}_{i,j}$, $p_{ij} = A_{ij}/D_{ii}$
- Modify the loss (sum over the edge-->sparse)

$$l = -\sum_{(i,j)\in\mathcal{D}} [p_{i,j}\ln\sigma(r_i^T c_j) + \lambda P_{\mathcal{D},j}\ln\sigma(-r_i^T c_j)]$$

• Local negative samples drawn from $P_{\mathcal{D},j} \propto \sum_{i:(i,j)\in\mathcal{D}} p_{i,j}$

NE as Sparse Matrix Factorization

• Let the partial derivative w.r.t. $r_i^T c_j$ be zero

$$r_i^T c_j = \ln p_{i,j} - \ln(\lambda P_{D,j}), \quad (v_i, v_j) \in \mathcal{D}$$

• Matrix to be factorized (sparse)

$$M_{i,j} = \begin{cases} \ln p_{i,j} - \ln(\lambda P_{D,j}) & , (v_i, v_j) \in \mathcal{D} \\ 0 & , (v_i, v_j) \notin \mathcal{D} \end{cases}$$

NE as Sparse Matrix Factorization

Compared with matrix factorization method (e.g., NetMF)

$$\log\left(\frac{\operatorname{vol}(G)}{b}\left(\frac{1}{T}\sum_{r=1}^{T}\left(\boldsymbol{D}^{-1}\boldsymbol{A}\right)^{r}\right)\boldsymbol{D}^{-1}\right) \quad \text{V.S.} \quad M_{i,j} = \begin{cases} \ln p_{i,j} - \ln(\lambda P_{D,j}) & ,(v_{i},v_{j}) \in \mathcal{D} \\ 0 & ,(v_{i},v_{j}) \notin \mathcal{D} \end{cases}$$

- Sparsity (local structure and local negative samples) → much faster and scalable (e.g., randomized tSVD, O(|*E*|))
- The optimization (single thread) is much faster than SGD used in DeepWalk, LINE, etc. and is still scalable!!!
- Challenge: may lose high order information!
- Improvement via spectral propagation

Higher-order Cheeger's inequality

- $L=U\Lambda U^{-1}$, where $\Lambda=diag([\lambda_1,...,\lambda_n])$ with $0=\lambda_1 \leq \cdots \leq \lambda_n$
- Bridge graph spectrum and graph partitioning

$$\frac{\lambda_k}{2} \le \rho_G(k) \le O(k^2) \sqrt{\lambda_k}$$

• *k*-way Cheeger constant $\rho_G(k)$: reflects the effect of the graph partitioned into *k* parts. A smaller value of $\rho_G(k)$ means a better partitioning effect.

33

Spectral Propagation of ProNE

• Spectral propagation only involves sparse matrix multiplication! The complexity is linear!

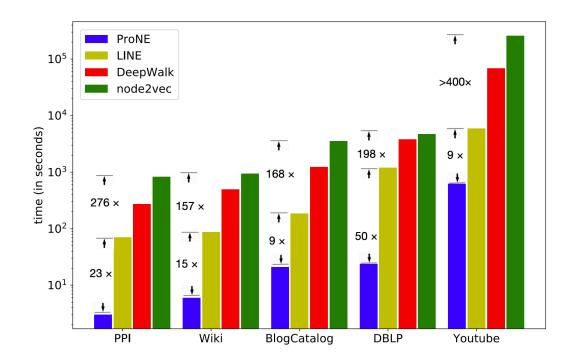
$$R_d \leftarrow D^{-1}A(I_n - \widetilde{L})R_d$$

- where $\widetilde{L} = Udiag([g(\lambda_1), ..., g(\lambda_n)])U^T$ $g(\lambda) = e^{-\frac{1}{2}[(\lambda - \mu)^2 - 1]\theta}$
- To avoid explicit eigendecomposition, use Chebyshev expansion: $\sim \frac{k-1}{2}$

$$\widetilde{L} \approx B_0(\theta) T_0(\bar{L}) + 2 \sum_{i=1}^{\infty} (-)^i B_i(\theta) T_i(\bar{L})$$

sparse matrix factorization + spectral propagation
 = O(|V|d² + k|E|)

Results



* ProNE (1 thread) v.s. Others (20 threads)

	Dataset	DeepWalk	LINE	node2vec	ProNE
-	PPI	272	70	828	3
* 10 minutes on	Wiki	494	87	939	6
Youtube (~1M nodes)	BlogCatalog	1,231	185	3,533	21
	DBLP	3,825	1,204	4,749	24
	Youtube	68,272	5,890	>5days	627

** Code available at https://github.com/THUDM/ProNE

Effectiveness experiments

Dataset	trai	ning ratio	0.1	0.3	0.5	0.7	0.9					
		epWalk	16.4	19.4	21.1	22.3	22.7					
		LINE	16.3	20.1	21.5	22.7	23.1					
	n n n n	ode2vec	16.2	19.7	21.6	23.1	24.1		Dataset	training ratio	0.01	
Idd	GraRep		15.4	18.9	20.2	20.4	20.9			DeepWalk	49.3	
щ]]	HOPE	16.4	19.8	21.0	21.7	22.5				LINE	48.7
	ProN	NE (SMF)	15.8	20.6	22.7	23.7	24.2		പ	node2vec	48.9	
	$\begin{array}{c c} \text{ProNE} \\ (\pm \sigma) \end{array}$		18.2	20.0 22.7	24.6	25.4	25.9		DBLP	GraRep	50.5	
			(±0.5)	(±0.3)	(±0.7)	(±1.0)	(± 1.1)			HOPE		52.2
	De	epWalk	40.4	45.9	48.5	49.1	49.4			ProNE (SMF)		50.8
		LÎNE	47.8	50.4	51.2	51.6	52.4			ProNE	48.8	
	nc	ode2vec	45.6	47.0	48.2	49.6	50.0			$(\pm \sigma)$	(±1.0)	
Wiki	GraRep		47.2	49.7	50.6	50.9	51.8		e	DeepWalk LINE	38.0 33.2	
M		HOPE	38.5	39.8	40.1	40.1	40.1		Youtube		I	
	ProN	NE (SMF)	47.6	51.6	53.2	53.5	53.9			ProNE (SMF) ProNE	36.5 38.2	
	ProNE		47.3	53.1	55.2 54.7	55.2	57.2					$(\pm \sigma)$
		$(\pm \sigma)$	(± 0.7)	(± 0.4)	(± 0.8)	(±0.8)	(±1.3)			(±0)	(±0.0)	
		epWalk	36.2	39.6	40.9	41.4	42.2					
	LINE node2vec		28.2	30.6	33.2	35.5	36.8		* ProNE (S		MF) =	
log			36.3	39.7	41.1	42.0	42.1					
ata									onl	y sparse	matr	
õ		BraRep	34.0	32.5	33.3	33.7	34.1		Om	y opuloe	matri	
BlogCatalog				-			000					
	Pro		E E	-mbe	d 100),000	,000 r	lod	les l	by one th	read	
				20 h		with m	orfor		no	oupori	ority	
	! ·			23110	Juis		enor	1119	IIICE	e superi	only	

DBLP	DeepWalk	49.3	55.0	57.1	57.9	58.4
	LINE	48.7	52.6	53.5	54.1	54.5
	node2vec	48.9	55.1	57.0	58.0	58.4
	GraRep	50.5	52.6	53.2	53.5	53.8
	HOPE	52.2	55.0	55.9	56.3	56.6
	ProNE (SMF)	50.8	54.9	56.1	56.7	57.0
	ProNE	48.8	56.2	58.0	58.8	59.2
	$(\pm \sigma)$	(±1.0)	(±0.5)	(±0.2)	(±0.2)	(± 0.1)
	DeepWalk	38.0	40.1	41.3	42.1	42.8
Youtube	LINE	33.2	35.5	37.0	38.2	39.3
	ProNE (SMF)	36.5	40.2	41.2	41.7	42.1
Y	ProNE	38.2	41.4	42.3	42.9	43.3
	$(\pm \sigma)$	(±0.8)	(±0.3)	(±0.2)	(±0.2)	(±0.2)

0.03

0.05

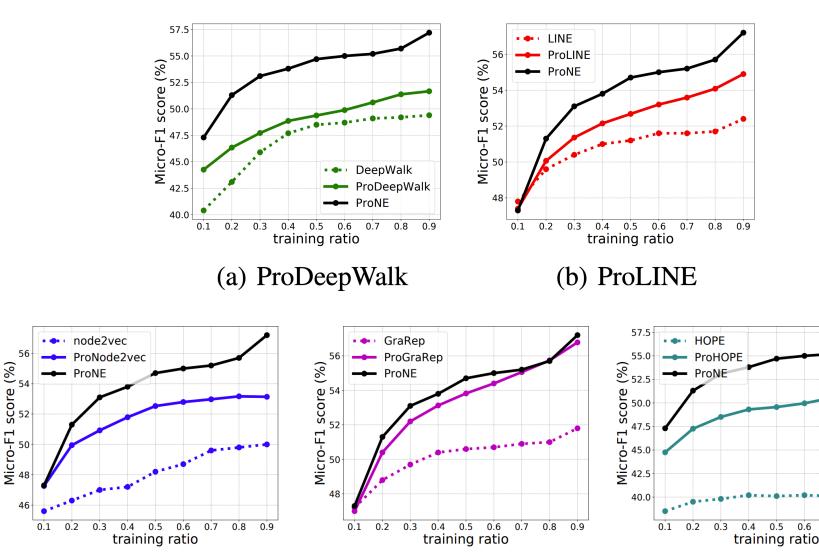
0.07

0.09

= ProNE w/ rix factorization d:

** Code available at https://github.com/THUDM/ProNE

Spectral Propagation for Enhancement



(c) ProNode2vec

(e) ProHOPE

0.7

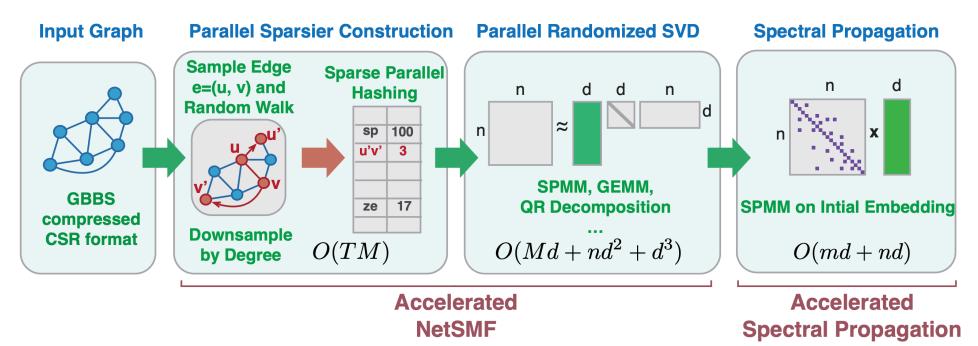
0.8 0.9

Net(S)MF vs. ProNE

$$\log\left(\frac{\operatorname{vol}(G)}{b}\left(\frac{1}{T}\sum_{r=1}^{T}\left(\boldsymbol{D}^{-1}\boldsymbol{A}\right)^{r}\right)\boldsymbol{D}^{-1}\right) \quad \textbf{V.S.} \quad M_{i,j} = \begin{cases} \ln p_{i,j} - \ln(\lambda P_{D,j}) &, (v_{i}, v_{j}) \in \mathcal{D} \\ 0 &, (v_{i}, v_{j}) \notin \mathcal{D} \end{cases}$$

- NetMF is slow depending on the density of the matrix;
- NetSMF needs to approximate high-order random-walk matrix polynomials
- ProNE=sparse MF + spectral propagation is much faster
- Is that possible? Net(S)MF + ProNE?

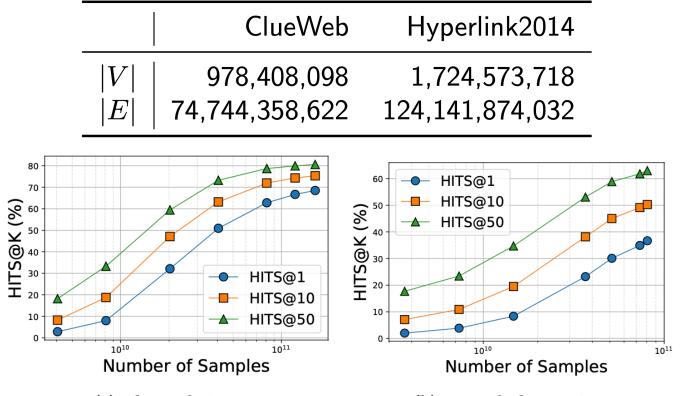
LightNE (SIGMOD'21)



- Scalable: Embed graphs with 1B edges within 1.5 hours.
- Lightweight: Occupy hardware costs below 100 dollars measured by cloud rent to process 1B to 100B edges.
- Accurate: Achieve the highest accuracy in downstream tasks under the same time budget and similar resources.

LightNE on Very Large Graphs

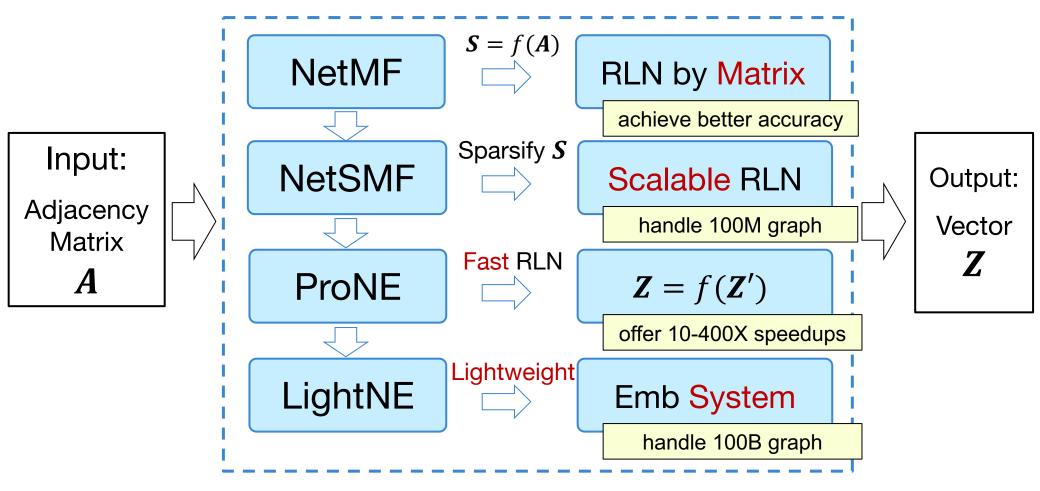
• None of the existing network embedding systems can handle such large graphs in a single machine!



(a) ClueWeb-Sym (b) Hyperlink2014-Sym Figure 3: HITS@K (K = 1, 10, 50) of LIGHTNE w.r.t. the number of samples.

** Code available at https://github.com/xptree/LightNE

Representation Learning on Networks



- Qiu et al. Network embedding as matrix factorization: unifying deepwalk, line, pte, and node2vec. WSDM'18. The most cited paper in WSDM'18 as of May 2019
 J. Qiu, Y. Dong, H. Ma, J. Li, C. Wang, K. Wang, and J. Tang. NetSMF: Large-Scale Network Embedding as Sparse Matrix Factorization. WWW'19.
- 3. J. Zhang, Y. Dong, Y. Wang, J. Tang, and M. Ding. ProNE: Fast and Scalable Network Representation Learning. IJCAI'19.
- 4. J. Qiu, L. Dhulipala, J. Tang, R. Peng, and C. Wang. Lightne: A lightweight graph processing system for network embedding. SIGMOD'21.

Homework 2

- Experiments on different network embedding methods
 - Due by 24th July
 - Compare the performance of four methods (including DeepWalk, NetMF, NetSMF, ProNE)
 - Directly import the models from CogDL (but read the implementations in CogDL if possible)
 - Carefully select the hyper-parameter setting for methods
 - Visualize the experimental results
 - Give the analysis of the results
- Find the homework material from the course website: <u>https://cogdl.ai/gnn2022/</u>

Thank you!

Collaborators:

Zhenyu Hou, Yuxiao Dong, Jie Tang et al. (THU) Qingfei Zhao, Xinije Zhang, Peng Zhang (Zhipu Al) Hongxiao Yang, Chang Zhou, et al. (Alibaba)

Yang Yang (ZJU)

Yukuo Cen, KEG, Tsinghua U. Online Discussion Forum https://github.com/THUDM/cogdl https://discuss.cogdl.ai/